Autism spectrum disorder (ASD) is characterized by atypical and idiosyncratic language, which often has its roots in pragmatic deficits. Identifying and measuring pragmatic language ability is challenging and requires substantial clinical expertise. In this paper, we present a method for automatically identifying pragmatically inappropriate language in narratives using two features related to relevance and topicality. These features, which are derived using techniques from machine translation and information retrieval, are able to distinguish the narratives from children with ASD from those of their language-matched peers and may prove useful in the development of automated screening tools for autism and neurodevelopmental disorders.
Index Terms: spoken language evaluation, child language, diagnostic tools, discourse analysis