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Abstract
Recently, Long Short-Term Memory Recurrent Neural Network
(LSTM-RNN) has become an attractive architecture in speech
synthesis for its ability to learn long time-dependencies. Con-
textual linguistic information is an important feature for nat-
uralness in speech synthesis and using that feature in various
speech synthesis models improves the quality of the synthesized
speeches for languages. In this paper, LSTM-RNN was applied
in Myanmar speech synthesis, and the importance of contextual
linguistic features and the effect of applying explicit tone in-
formation in different architectures of LSTM-RNN was exam-
ined using our proposed Myanmar question set. Experiments
of LSTM-RNN, and a hybrid system of DNN and LSTM-RNN,
i.e., four feedforward hidden layers followed by two LSTM-
RNN layers, were done on Myanmar speech synthesis and com-
pared with the baseline DNN. Both objective and subjective
evaluations show that the hybrid of DNN and LSTM-RNN sys-
tem gives more satisfiable synthesized speeches for Myanmar
language than the LSTM-RNN and baseline DNN systems.
Index Terms: Long Short-Term Memory, LSTM, Myanmar
speech synthesis, Myanmar Text to Speech, Linguistic feature,
Question set

1. Introduction
The goal of text-to-speech (TTS) system is to generate a natu-
rally sounding speech waveform for given input text. Recently,
neural networks have been applied as acoustic models for sta-
tistical parametric speech synthesis (SPSS). Zen el at. proposed
an approach which uses Deep Neural Network (DNN) to model
the relationship between input features and their acoustic real-
izations [1]. The various training aspects of DNN as a gener-
ation model for TTS were investigated in [2]. However, one
limitation of the feed-forward DNN-based acoustic modeling is
that the sequential nature of speech is ignored [3]. Recurrent
Neural Networks (RNNs) were applied for modeling sequen-
tial data that embodies correlations between consecutive frames
in speech. However, the standard RNNs has the problem that
the influence of a given input on the hidden layer either de-
cays or blows up exponentially around the networks recurrent
connections [4]. To overcome this vanishing gradient problem,
the most effective solution so far is Long Short-Term Memory
(LSTM) architecture [5]. LSTM is the most widely used RNN
in speech processing because LSTM is capable of learning long
time-dependencies [6].

In [7], RNNs with bidirectional Long Short-Term Memory
(BLSTM) were adopted to capture the correlation information

between any two frames in a speech utterance. The unidirec-
tional LSTM RNNs with a recurrent output layer was proposed
to apply acoustic modeling for SPSS to achieve low-latency
speech synthesis in [3]. In [8], several variants of LSTM were
examined and the forget gate and cell state of the LSTM were
analyzed. Recent studies demonstrated that LSTMs can achieve
significantly better performance on SPSS than DNN.

Little research has been performed for speech synthesis
on Myanmar language former known as Burmese. Only three
SPSS based papers on Myanmar speech synthesis are found
publicly: HMM-based Myanmar TTS [9], CART-based Myan-
mar TTS [10], and DNN-based Myanmar speech synthesis [11].
In [9], the first HMM-based Myanmar TTS was operated at the
syllable level and word information was used in CART-based
Myanmar TTS in [10]. In [11], more contextual information
was applied in Myanmar speech synthesis.

In this work, LSTM-RNN was applied in Myanmar speech
synthesis to improve the naturalness of synthesized speech, and
compared with DNN-based speech synthesis. The comparisons
of LSTM-RNN architectures for Myanmar speech synthesis
were experimented, and the detail analysis on the aspects of us-
ing linguistic features on LSTM-RNN based Myanmar speech
synthesis was also conducted. As LSTM-RNN achieves bet-
ter results on speech synthesis of other languages [3, 7, 12],
we want to analyze whether it can get more natural synthesized
speech for Myanmar speech synthesis. To the best of our knowl-
edge, this is the first attempt to apply LSTM-RNN architecture
in Myanmar speech synthesis.

The rest of this paper is organized as follows. Section
2 presents extracting linguistic information for Myanmar lan-
guage and Section 3 describes LSTM-RNN based speech syn-
thesis. Section 4 presents experimental setup of different net-
work architectures for Myanmar speech synthesis and Section
5 reports the evaluation results on all experiments. Some is-
sues of the performance of LSTM-RNN based speech synthesis
for Myanmar language are discussed in Section 6 and Section 7
describes the conclusion.

2. Linguistic feature extraction for
Myanmar language

The general speech synthesis architecture of Festival1 was used
for extracting contextual information from utterances. How-
ever, there is no phoneme features file and lexicon for Myanmar
language in Festival. Therefore, we prepared phoneme features

1http://www.cstr.ed.ac.uk/projects/festival/

10th ISCA Workshop on Speech Synthesis (SSW 10)
20-22 September 2019, Vienna, Austria

189 10.21437/SSW.2019-34



for consonants such as consonant type, place of articulation,
consonant voicing, and lip rounding and phoneme features for
vowels such as vowel frontness, vowel height, tone, and nasal-
ity [10]. Standard Myanmar phonemes and extended phonemes
for foreign words [13] were used in this work. Myanmar pro-
nunciation lexicon with syllable information was prepared be-
cause syllable is the basic sound unit bearing tone information
in Myanmar language [10]. Many contextual labels reported
in [11] formatted as HTS-style labels2 have been extacted for
Myanmar language.

A question set is used in linguistic feature extraction for
DNN and LSTM-RNN based speech synthesis and it is also
language dependent requirement. There is no publicly avail-
able Myanmar question set for linguistic feature extraction. We
proposed Myanmar question set in [11] and it was used for ex-
tracting linguistic features. In Myanmar language, tone is the
integral part of the pronunciation of syllable and can affect the
meaning of that syllable. There are four types of tones in Myan-
mar language and prosodic features such as fundamental fre-
quency and duration can be influenced by the tone type of the
syllable. Therefore, questions about explicit tone information
has been used in Myanmar question set although tone informa-
tion is already included in the grapheme of the syllable. The
updated Myanmar question set including 635 questions (622
phoneme questions and 13 related positional questions) was ap-
plied in linguistic feature extraction for Myanmar speech syn-
thesis.

3. LSTM-RNN based speech synthesis
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Figure 1: A schematic diagram of LSTM-RNN based speech
synthesis

Figure 1 illustrates the schematic diagram of LSTM-RNN
architecture for speech synthesis. In LSTM-RNN based speech
synthesis, input features are extracted from contextual labels

2http://www.cs.columbia.edu/˜ecooper/tts/lab_
format.pdf

generated by text analysis phase. Input features includes bi-
nary features for categorical contexts (e.g. phoneme identity,
tone type of the syllable) and numerical features for numeri-
cal contexts (e.g. the number of syllables in the word). The
output features are acoustic features like spectral and excitation
parameters, and their dynamic features. For training LSTM-
RNNs, input features and output acoustic features can be force
aligned frame-by-frame by HMMs in advance. The weights of
LSTM-RNN are initialized randomly and then they are updated
to minimize the mean squared error between the target features
and predicted output features. At the synthesis time, the in-
put feature vectors are extracted from the text analysis and then
mapped to output acoustic vectors by a trained LSTM-RNN.
The output acoustic features are used with the speech parame-
ter generation algorithm. Finally, the vocoder outputs a synthe-
sized waveform according to the given speech parameters.

4. Experiments
4.1. Experimental setups

Myanmar phonetically balanced corpus (PBC) [9] built from
Basic Travel Expression Corpus (BTEC) [14] was employed
for building all speech synthesis for Myanmar language. The
speech data was downsampled from 48kHz to 16kHz sampling.
Myanmar PBC was divided into three subsets: 3,800 utterances
for training, 100 utterances for development, and 100 utterances
for testing. All sets are disjoint.

The proposed question set was used for extracting input lin-
guistic features for Myanmar language. WORLD [15] vocoder
was used to extract 60-dimensional Mel-Cepstral Coefficient
(MCCs), 5-dimentional band aperiodicities (BAPs), and loga-
rithmic fundamental frequencies (log F0) at 5 msec frame step.
A binary voiced/unvoiced feature was used for voicing informa-
tion. Input linguistic features were min-max normalized to the
range of [0.01, 0.99], and acoustic features were mean-variance
normalized before training. Maximum likelihood parameter
generation (MLPG) was applied to generate smooth parameter
trajectories at generation time. Merlin speech synthesis toolkit
[16] with Keras [17] python library was applied for modeling all
systems on K80 GPU for training. DNN-based speech synthesis
[11] was used as the baseline in this paper.

4.2. Network Architectures

The following network architectures of speech synthesis sys-
tems were used in our experiments:

1. DNN : a baseline system with six feedforward hidden
layers of 1024 hyperbolic tangent units each

2. LSTM-1L : a single hidden layer with LSTM-RNN (512
units)

3. LSTM-2L : two hidden layers with LSTM-RNN (512
units each)

4. Hybrid-LSTM-1L : a hybrid of DNN and LSTM-RNN,
five feedforward hidden layers of 1024 hyperbolic tan-
gent units each, followed by a single LSTM-RNN layer
with 512 units

5. Hybrid-LSTM-2L : a hybrid of DNN and LSTM-RNN,
four feedforward hidden layers of 1024 hyperbolic tan-
gent units each, followed by two LSTM-RNN layers
with 512 units each

According to our preliminary results, we found that LSTM-
RNN hidden layers with 512 units gave better objective results
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than that with 256 and 1024 units. Therefore, LSTM-RNN hid-
den layers with 512 units have been used in all experiments. Si-
lence frames were removed from the training data for avoiding
overlearning silence labels in acoustic modeling. The weights
of all LSTM-RNNs were initialized randomly and then they
were updated to minimize mean squared error (mse) between
target and predicted output features. Stochastic gradient de-
scent (sgd) based learning rate scheduling was used for all hy-
brid systems and Adam optimizer [18] was used for LTSM-1L
and LSTM-2L. Exact LSTM gradient with untrancated Back-
propagation Through Time (BPTT) [4] was applied for training
LSTM-RNNs. All systems were trained with batch size of 25
sentences. Hyperparameters for each system were optimized on
the development set. Fixed momentum was used and learning
rates were tuned in these systems. A linear activation function
was used at the output layer for all systems.

5. Evaluation
The quality and naturalness of synthesized speeches generated
by the systems described in Section 4.2 are evaluated in terms
of objective and subjective measures.

5.1. Objective Evaluation

Objective results are used to measure the quality of synthesized
speech in terms of distortions between the synthesized speech
and natural speech of the original speaker. The objective mea-
sures are Mel-Ceptral Distortion (MCD) in dB, distortion of
band aperiodicities (BAP) in dB, F0 distortion in root mean
square error (RMSE), and voiced/unvoiced error (V/UV) in per-
centage. The lower is the better.

5.1.1. Effect of contextual linguistic information

We analyzed the effect of contextual linguistic information on
all LSTM-RNN architectures. As the LSTM-RNNs can access
the past contextual information through their recurrent connec-
tions, the effect of preceding two contextual information on
modeling all LSTM-RNN based speech synthesis systems was
experimented. Figure 2 and 3 depict the comparisons of MCD
and F0 RMSE using C 635 and C 423 on all LSTM-RNN ar-
chitectures for Myanmar speech synthesis respectively. C 635
refers 635 input linguistic features including current context,
and preceding and succeeding two contexts at phoneme, sylla-
ble, word, and utterance levels. C 423 refers 423 input linguis-
tic features including only current context, and succeeding two
contexts at these levels. In this case, tone information is also
included in contextual linguistic features of C 635 and C 423.
9 numeric features for frame related features are also used for
all experiments. C 635 and C 423 are extracted by applying
the proposed Myanmar question set. Figure 2 shows that ap-
plying C 635 on all architectures gets better prediction on Mel-
Cepstrum than applying C 423. In Figure 3, all architectures
applied C 635 except LSTM-1L get better F0 RMSE than that
applied C 423. These objective results confirm that preceding
contextual information is still important for modeling LSTM-
RNN based speech synthesis.

5.1.2. Effect of explicit tone questions in Myanmar question set

Though tone information is already included in the grapheme
of vowels in Myanmar language, explicit tone information was
added in the input linguistic features by applying questions
about tone types of vowels in Myanmar question set. Com-
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Figure 2: Effect of left contextual information on MCD
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Figure 3: Effect of left contextual information on F0

parisons of tone information and no tone information on mod-
eling LSTM-RNN based speech synthesis were experimented.
In this experiments, all the systems with tone information use
C 635 input features. Using explicit tone information in mod-
eling Myanmar speech synthesis give better MCD on all net-
work architectures in the experiments according to Figure 4. As
shown in Figure 5, all architectures modeling with explicit tone
information except LSTM-1L get better F0 RMSE than no ex-
plicit tone information. In general, we can conclude that explicit
tone questions in Myanmar question set are useful for modeling
Myanmar speech synthesis.
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Figure 4: Effect of explicit tone information on MCD

5.1.3. Objective results of different network architectures

Table 1 presents the objective results of different network
architectures for Myanmar speech synthesis. C 635 for
contextual linguistic features and 9 numerical features for
frame related features were applied in the experiments. It is
observed that all LSTM-RNN based speech synthesis systems
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Figure 5: Effect of explicit tone information on F0

achieve better objective results than the baseline DNN except
BAP distortion of LSTM-1L and Hybrid-LSTM-1L. It shows
that LSTM-2L objectively outperforms LSTM-1L across all
objective measures, and Hybrid-LSTM-2L gets better objective
results than Hybrid-LSTM-1L in terms of MCD, BAP, and
F0 RMSE. These results confirm that two hidden layers of
LSTM-RNNs can give better performance over single hidden
layer of LSTM-RNN. In particular, MCD of Hybrid-LSTM-2L
architecture decreases 0.15(dB) from that of the baseline DNN,
and F0 RMSE of Hybrid-LSTM-2L 25.93(Hz) is significantly
better than that of DNN 31.23(Hz). Hybrid-LSTM-2L is the
best network architecture for Myanmar speech synthesis in our
experiments.

Table 1: Comparison of objective results for all network archi-
tectures for Myanmar speech synthesis

MCD BAP F0 RMSE V/UV
(dB) (dB) (Hz) (%)

DNN (baseline) 5.36 0.21 31.23 5.47
LSTM-1L 5.34 0.21 27.88 5.31
LSTM-2L 5.27 0.20 26.02 5.26
Hybrid-LSTM-1L 5.28 0.21 27.74 5.06
Hybrid-LSTM-2L 5.21 0.20 25.93 5.16

5.2. Subjective Evaluation

The performance of DNN, LSTM-2L, and Hybrid-LSTM-2L
systems was subjectively evaluated by perceptual tests. 30 ut-
terances were randomly selected from the evaluation set and
open domain, internet data. These utterances were synthesized
by the baseline DNN, LSTM-2L, and Hybrid-LSTM-2L sys-
tems. Three AB preference tests (DNN vs. LSTM-2L, DNN
vs. Hybrid-LSTM-2L, and LSTM-2L vs. Hybrid-LSTM-2L)
were participated by 20 non-expert native speakers of age range
from 20 to 40 years. The synthetic speeches were presented in
random order in each pair of all three tests. Subjects were given
30 pairs of synthesized speeches and asked to choose the more
natural one in each pair or “Neutral” if the difference between
two speech samples cannot be perceived.

The scores of three AB preference tests with 95% confi-
dence intervals are presented in Figure 6, 7, and 8. The higher
preference scores on LSTM-2L and Hybrid-LSTM-2L over the
baseline DNN can also be seen clearly in the figures 6 and
7. They confirm that LSTM-RNN based systems can gener-
ate more natural synthesized speech than DNN based system.
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Again, the two LSTM-RNN based systems are compared in
Figure 8 by the preference score and here, the performance of
Hybrid-LSTM-2L is obviously preferred over LSTM-2L by the
native listeners. According to the three preference tests, it can
be concluded that the naturalness of Hybrid-LSTM-2L system
is highly preferred than that of DNN and LSTM-2L.
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The naturalness of the synthesized speeches generated by
DNN, LSTM-2L, and Hybrid-LSTM-2L systems were further
evaluated in terms of Mean Opinion Score (MOS), to confirm
the results from the preference tests whether they give the same
conclusion. The same 20 subjects from AB preference tests
were also used in the MOS test. It is the subject to rate the
naturalness of synthesized speeches on a scale from 1 to 5 where
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1 is bad and 5 is excellent. The scores of DNN, LSTM-2L, and
Hybrid-LSTM-2L are shown in Figure 9 with 95% confidence
intervals of MOS results by the error bars. The LSTM-RNN
based systems give higher MOS scores than the baseline DNN,
and the Hybrid-LSTM-2L has the best result among all. Some
samples of synthesized speeches generated by these systems are
available for listening on here3.

All AB preference tests and MOS test confirmed that
LSTM-RNN based systems offer better performance than the
baseline DNN, and furthermore, Hybrid-LSTM-2L outperform
both DNN and LSTM-2L in terms of naturalness. It can be
observed that the preference on Hybrid-LSTM-2L achieved the
highest score not only in terms of objective but also subjective
evaluation.

6. Discussion
It can be noticed that though LSTM-2L and Hybrid-LSTM-2L
have only a slight difference in objective results, their subjec-
tive scores are notably different. In particular, the difference
of MCD between two systems is only 0.06(dB) and the differ-
ence of F0 RMSE is only 0.09(Hz). However, the difference
of MOS results between two systems (0.75) is relatively high.
The occurrence of breath pauses insertion in wrong places in
LSTM-2L is more than that of DNN and Hybrid-LSTM-2L,
made LSTM-2L to be less preferred by the listeners.

270 synthesized speeches (100 each from development and
evaluation sets, and 70 from open internet data) were inspected
on DNN, LSTM-2L, and Hybrid-LSTM-2L systems. It is found
that LSTM-RNN based speech synthesis can reduce half of in-
correct pronunciation of tones over DNN based speech synthe-
sis. Better prediction of F0 by LSTM-RNN contributed to the
more natural synthesized speech of Myanmar speech synthe-
sis in addition to better prediction of other factors (MCD, BAP,
V/UV).

7. Conclusions
In this paper, the use of LSTM-RNN architecture for Myanmar
speech synthesis has been investigated. The effect of contextual
linguistic features extracted by using proposed Myanmar ques-
tion set on LSTM-RNN based speech synthesis was explored
and it shows that the preceding contextual information and ex-
plicit tone information are still important for modeling LSTM-
RNN based speech synthesis though it has the ability of access-
ing past information through their recurrent connections. Both
objective and subjective results confirm that LSTM-RNN based
systems outperform DNN based system and the hybrid of DNN
and LSTM-RNN offers more suitable network architecture for
Myanmar speech synthesis in naturalness.

From this research work, it can be clearly concluded that the
importance of correct phrase break makes the system to be more
preferred. Therefore, using phrase break features in the network
architecture would be our future work for better naturalness of
Myanmar speech synthesis.
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