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Abstract 

This study used the TRACE model of spoken word recognition 

to simulate adult second language (L2) learners’ spoken word 

recognition at two time points in learning. The pre-existing 

architecture of jTRACE with the TRACE-T phonology was 

used to simulate spoken Mandarin word recognition by adult L2 

learners at week 1 and week 15 of structured elementary 

classroom learning. A modified lexicon with reduced tonal 

information was used to capture recognition during week 1 of 

learning. Partially restored tonal information was used to 

capture the change observed at week 15. jTRACE simulations 

were validated by comparing the results to eye fixation data 

taken at week 1 and week 15. The eye-tracking task consisted 

of viewing four Mandarin words written in pinyin while one of 

the words was presented auditorily. Roughly half of the trials 

contained words that were segmentally and tonally contrastive 

(e.g., gān, chá, pǐ, xiàn). The remaining trials contained a target 

and competitor that were segmentally identical but tonally 

contrastive (e.g., mā, má, pěn, gòng). Proportion of looks to the 

target were calculated and compared to the jTRACE 

simulations using multiple linear regression. The results 

showed evidence of activation and recognition, thereby 

corroborating our modeling approach. 

Index Terms: computational modeling, spoken word 

recognition, Mandarin Chinese, speech perception, second 

language acquisition, TRACE 

1. Introduction 

Mandarin Chinese (hereafter ‘Mandarin’) is a tonal language. 

That is, listeners of Mandarin use information from pitch 

pattern variations to distinguish between different word 

meanings.  Whereas all languages use pitch variations to some 

degree (e.g., intonation and stress) [1], Mandarin uses both 

segmental and suprasegmental information in order to convey 

the meanings of words. To recognize a spoken word, a listener 

must therefore process strings of consonants and vowels as well 

as the pitch pattern or tone that the segmental string carries [2]. 

Standard Mandarin has four tones. Tone 1 is a high-level tone 

(e.g., fū). Tone 2 is a rising tone that starts low and ends high 

(e.g., fú). Tone 3 is a low dipping tone that falls first and rises 

toward the end (e.g., fǔ). Tone 4 is a falling tone, which starts 

high and falls to low (e.g., fù). 

To fully understand the process of spoken word recognition 

across languages, it is necessary to understand how speakers 

use both segmental and suprasegmental information. Yet, 

traditional approaches to spoken word recognition initially 

ignored suprasegmental information (e.g., [3, 4]). One of the 

most influential models of spoken word recognition is the 

TRACE model [4]. TRACE is a connectionist model of spoken 

word recognition, which has been used to successfully model 

speech perception and spoken word recognition for a number of 

languages [5]. TRACE uses three independent tiers of 

information. The first tier involves feature information of the 

particular phonemes (e.g., consonantal, vocalic). The second 

tier is the phoneme tier, which consists of all of the phonemes 

for the language under investigation. The phonemes are then 

combined as words to create the third tier, which makes up the 

lexicon. As a connectionist network, TRACE involves three 

types of connectivity. The first is feedforward in which features 

connect to phonemes and phonemes connect to words. For 

example, the consonantal feature feeds forward or excites 

consonant phonemes like /n/ which in turn feeds forward or 

excites words containing /n/. The second type of connectivity 

involves lateral or within tier inhibitory connections. For 

example, as consonantal feature information is presented and 

fed forward, other feature information like vocalic information 

is inhibited. Similarly at the phoneme and word tiers, as /n/ and 

words containing /n/ are excited, non-nasals and words without 

nasals are inhibited. The third type of connectivity involves top-

down feedback in which lexical information excites 

connections between words and phonemes. For example, 

ambiguous input in which the word could be either ‘nak’ or 

‘nag’ would active the latter because it is an English word 

whereas the former is not. This activation would excite the 

phonemes /n/, /æ/, /g/ thereby giving lexical feedback for the 

ambiguous phoneme /g/ over /k/, i.e., the Ganong effect [6]. 

Crucial to the present study, TRACE did not originally 

account for suprasegmental information. [7] first put forth a 

theoretical solution for modeling suprasegmental information 

such as tone: a fourth tier of representation for tones (tonemes), 

which would be processed in parallel with the phoneme tier. 

The tone tier would have tonal information for each tonal 

contrast similar to feature level contrasts. Words that are 

segmentally contrastive like fù and mā would be distinguished 

through excitement in the feature tier. However, words that are 

segmentally identical and tonally contrastive like fù and fǔ 

would be distinguished through excitement in the tone tier. [8] 

used the visual world paradigm to study the activation (and 

competition) of tonal words. First language (L1) Mandarin 

speakers’ eyes were recorded as they heard a spoken word. 

Onscreen participants saw images of words that were 

segmentally identical but tonally contrastive (e.g., chūang 

‘window’ chúang ‘bed’). The authors found evidence that 

segmental information and tonal information were accessed 

simultaneously, in line with tone and feature information 

proposed for TRACE. 

More recently, [9] created a computational model of 

Mandarin spoken word recognition by building TRACE-T. 

TRACE-T implements a modified jTRACE architecture to 
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allow for the coding of both tones and segments. TRACE-T 

splits the feature tier into two groups: 1) segment features, and 

2) tonal features. The model provides a foundation for not only 

modeling Mandarin spoken word recognition but also any other 

tonal language. In the current study, we extend the framework 

of the TRACE model and TRACE-T phonology to model L2 

Mandarin spoken word recognition. We implement our model 

in jTRACE and compare our results to preliminary eye-tracking 

data from adult L2 learners. By reducing access to tonal 

information in the lexicon, we are able to build simulations that 

are comparable to real L2 word recognition. Unique to our 

approach, we modeled L2 learning at two time points roughly 

15 weeks apart. We created models of the first week of learning 

by reducing tonal information in the lexicon and the input 

words. Further, we modeled the fifteenth-week eye-tracking 

data by providing partially restored tonal information. 

2. Methods 

2.1. jTRACE modeling 

To model L2 Mandarin word recognition, we implemented the 

TRACE-T phonology [9]. That is, instead of using the seven 

features for each phoneme which are used for non-tonal 

languages (consonantal, vocalic, diffuseness, acuteness, 

voicing, power, and burst amplitude), the features of the 

Mandarin phonology were split into features for segments and 

features for tones. Our approach followed the TRACE-T 

method created from the PatPho dimensions of Mandarin to use 

four dimensions of jTRACE for consonants and vowels [10]. 

Because our goal was to model Mandarin L2 learners’ word 

recognition, we chose the Mandarin phonology over an English 

phonology. Whereas the features of Mandarin and English are 

different in many ways, the majority of our test items (see eye-

tracking task materials) involved segmental contrasts that have 

English counterparts (e.g., fu, ma, ba). Most importantly, the 

Mandarin phonology has a place for tonal distinction while an 

English phonology does not have a place to model these 

changes for either the beginning state or learning over time. 

Syllables were represented with a TRACE-T inspired 

structure, i.e., segment-tone-segment-tone-segment-tone-

segment-tone. All words used the same number of segments 

and tones to ensure that tonal information remained constant 

within condition. The syllable structure of all Mandarin words 

used in the eye-tracking experiment were separated based on 

initial and final. The initials and finals of all Mandarin words in 

the experiment were then coded from pinyin to IPA using a self-

made key and value function built in R, which maps pinyin 

initials to IPA symbols. For most syllables in Mandarin, the 

coding from pinyin to Mandarin is a one-to-one match. 

However, for words that have pinyin vowels that contain “i”, 

“u”, “y”, or “w”, individual changes were made. These changes 

were necessary due to the overlapping sound and symbol 

representation in pinyin.  Next, all IPA symbols were mapped 

to the Mandarin phonology symbols used in TRACE-T [9]. 

Because recent studies on tone learning and perception have 

suggested that naïve tone learners rely on F0 less than L1 

speakers of a tone languages during lexical access (e.g., [11]), 

we decided to build two separate lexicons for week 1 and week 

15 L2 learners. The words in the week-1 learner lexicon 

contained 20% of tonal information that an L1 lexicon would 

have; the words in the week-15 learner lexicon had 40% of the 

tonal information compared to an L1 lexicon. We note that the 

words represented are identical across the two time points. Only 

the representations of the words in jTRACE have been 

manipulated. Importantly, the pre-existing architecture of 

jTRACE does not allow for variant levels of tonal information 

throughout the word. TRACE-T implements tonal information 

throughout the word in five different places with features 

depending on the height and contour of the desired tone. 

Because of the linear nature of processing tonal features in 

TRACE-T, we chose to have the reduced tonal information 

starting in the first position for both week 1 and week 15 

simulations. Our approach was driven, in part, by recent studies 

that suggest that segmental and tonal information is accessed 

simultaneously [8]. For these reasons, the week-1 learner 

lexicon starts with one instance of tonal information in the first 

position. To model learning after 15 weeks, we added partially 

restored tonal information in the second tonal slot. All later 

tonal slots were filled with a featureless phoneme represented 

as “-” that would neither result in activation nor inhibition in 

the model. 

Lastly, for both models, we used the Luce choice rule to 

convert activations to response probabilities. All simulations 

were iterated for a minimum of 80 cycles and reduced later in 

data analysis following [9]. Furthermore, the lexicon is 

controlled by only comparing the response probabilities of the 

four words in a particular item shown on screen. That is, the 

model ran one set of words at a time for a total of 120 

simulations for each time point. This choice makes the initial 

probability more comparable to eye-tracking data by reducing 

competition from other words not visually shown. Whereas the 

assumption of equal frequency across lexical items is not true 

for L1 listeners [4], our L2 learners had extremely limited 

Mandarin lexicons, particularly at week 1. We, therefore, 

controlled token frequency by setting frequency to 100 across 

the entire learner lexicon. This assumption allows jTRACE to 

treat each set of words as new words. That is, like the L2 

learners, the model does not have a fully developed lexicon that 

would help inform the recognition of a word via top-down 

feedback. 

2.2. Eye-tracking task 

2.2.1. Participants 

Fifteen L1 English-L2 Mandarin participants were tested. All 

participants were adults enrolled in a US university first-

semester Mandarin language class at the time of testing. No 

participants were heritage speakers and all participants passed 

a pitch perception test which required the ability to reliably 

discriminate two pure tones at 20 Hz or lower. 

2.2.2. Materials 

Stimuli included 72 segmentally and tonally contrastive items 

(e.g., gān, chá, pǐ, xiàn) and 48 segmentally identical but 

tonally contrastive (e.g., mā, má, pěn, gòng) items using a 

design modeled on [12]. Figure 1 shows an example of a tonally 

contrastive item. A target (fú, top right) appeared with a 

competitor that only differed in tone (fǔ, top left). Two 

distractors were also shown (zāng, sà, bottom left and right). 

Location of targets, competitors, and distractors were 

counterbalanced across the experiment. Each of the 120 targets 

was recorded by a female L1 Mandarin speaker from Beijing 

and saved at 16 bits/44,100 Hz using Praat [13] with a 

normalized amplitude of 70 db. 
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Figure 1: Example eye-tracking slide containing 

segmentally identical but tonally contrastive target 

and competitor. 

2.2.3. Procedure 

Participants performed the eye-tracking task twice, once during 

the first week of a structured, in-person, elementary Mandarin 

Chinese as a foreign language class, and again during the 

fifteenth week (i.e., the end of the university semester). The 

class met three times per week for a total of 210 minutes of class 

time each week. Participants were tested in a quiet lab and first 

had their eyes calibrated using a 12-point system. They 

performed 120 trials in a pseudo-randomized order. On each 

trial, a fixation cross appeared for 1 second followed by the 

simultaneous presentation of the 22 slide and the target audio. 

Participants’ eyes were continuously recorded at 30 Hz using 

the Eye-tribe system. A 2-second inter-trial interval preceded 

each trial, with the eye tracker recalibrated every eighth trial. 

Participants were told to mouse-click on the word that matched 

the perceived audio as quickly and accurately as possible. The 

entire lab visit lasted approximately 20 minutes. Participants 

were given class credit or a small payment for their time. 

2.3. Multiple Linear Regression 

To compare the jTRACE data with the L2 eye-tracking data, we 

first removed trials in which participants incorrectly mouse-

clicked on a displayed competitor or distractor word 

(approximately 2% of all data). The remaining correct trials 

were coded for fixation to the target, competitor, or distractors 

at each time point and averaged across subjects and items for 

the two segment-tone conditions. We then analyzed the fixation 

proportions from 200 ms post onset to 1,100 ms (i.e., 27 time 

points) in line with previous visual world paradigm studies 

given that approximately 200 ms is needed to program a 

saccade (e.g., [14]). For the jTRACE simulations, we chose to 

analyze cycles 16-42 in accordance with the 27 time points of 

eye-tracking data.  Multiple linear regression was carried out in 

R [15] following [16]. The regression model’s dependent 

variable was fixation proportions (or simulated activation 

probabilities) to the target. The independent variables were data 

type (eye-tracking/jTRACE), time (week 1/week 15), and 

segment-tone condition (segmentally and tonally contrastive/ 

segmentally identical but tonally contrastive). All three 

variables were treatment coded and tested for two-way and 

three-way interactions: lm(fixation-proportaion ~ data 

type*time*condition). 

3. Results 

The multiple linear regression model yielded a null effect of 

data type (β = 0.03, SE = .03, t = 1.14, p = .25) indicating that 

there was no difference between our simulated fixations 

(activation probabilities) and eye-tracking fixation proportions. 

Similarly, there was a null effect of time (β = -0.01, SE = .03, t 

= -0.16, p = .87) indicating that despite the intervening 15 

weeks of structured learning, no difference was found between 

week 1 and week 15 fixation proportions. There was also a null 

effect of segment-tone condition (β = 0.03, SE = .03, t = 0.95, 

p = .35) indicating that fixations to segmentally and tonally 

contrastive targets were no different than those to segmentally 

identical but tonally contrastive targets. In other words, the 

presence of a tonal competitor on screen did not significantly 

affect the participants’ fixation proportions across time. All 

interactions were null at an alpha of .05. Figure 2 summarizes 

the results by plotting the averaged data (points) with the 

regression lines.  

 

Figure 2: Eye-tracking fixation proportions to targets 

over time and jTRACE simulations at week 1 and week 

15 (points) with linear regression model fits (lines). 

4. Discussion and conclusion 

In this study, we extended previous Mandarin spoken word 

recognition research beyond the typical L1 group of 

participants (e.g., [7, 8]) in order to examine adult classroom L2 

learners. This served as a proof-of-concept study, in which we 

augmented previous jTRACE models with the TRACE-T 

phonology [9, 10] in order to create simulations of spoken word 

recognition at two points in time during structured L2 

acquisition. In line with previous studies that have suggested 

that Mandarin L2 learners weight F0 movement cues less than 

native speakers [17, 18], we initially reduced tonal information 

in our week 1 simulation and then used partially restored tonal 

information in our week 15 simulation. We compared these 

simulations to eye-tracking data obtained from L2 learners 

engaged in classroom learning and found that our jTRACE 

simulations did not statistically differ from the fixation 

proportions of real eye-tracking data over time, thus 

corroborating our modeling approach. 

One unexpected finding from our results, however, was that 

we did not find a significant difference between our data at 

week 1 and week 15. In other words, we did not observe a 
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measurable effect of learning. There are many potential 

explanations for why this may have been the case. We suspect 

the large individual variability observed at week 1, the small 

sample size and limited number of data points tested, i.e., low 

power, and our linear regression modeling approach (cf. growth 

curve analysis, which may better capture the rise) all 

contributed to the null effect. It also seems likely that a 15-week, 

one semester class may not have been enough input and 

learning to dramatically shift perception and spoken word 

recognition in our L2 learners [20]. This is in line with a large 

body of L2 Mandarin acquisition research that has 

demonstrated learners reach a tone learning plateau in which 

their abilities do not improve [18] and that any improvement is 

largely driven by categorical perception of tone [19]. 

We note that in our modeling approach, tonal information 

for both week 1 and 15 started at the same time, i.e., the first 

position. At week 15, we added tonal information at the second 

position to represent learning. This approach assumes that L2 

listeners, like L1 listeners, are able to simultaneously integrate 

segmental and tonal information as it unfolds in time. Indeed, 

evidence does suggest that intermediate and advanced L2 

listeners are able to do so in an L1-like manner [19]. Whether 

our beginner L2 listeners were able to do so remains an open 

question. 

In our current follow-up studies, we are improving on our 

approach in three ways: first, we are exploring a simulation 

approach which reduces tonal information in the input by 

increasing stochastic noise in the segments and tones. Because 

we assumed reduced tonal information for our L2 learners, 

adding a greater amount of stochastic noise in the jTRACE 

model may allow for reduced tonal information and increased 

segment information for early learners compared to simply 

reducing overall tonal information by having less tonal 

segments in line with [4] and [8]. Second, we aim to clarify how 

our jTRACE modeling and eye-fixation data align for L1 

Mandarin listeners. We assume our results will be comparable, 

but we are in the process of exploring to what degree the L1 and 

L2 groups are similar and different. Third, we are in the process 

of modeling the tone competitor fixations in the segmentally 

identical but tonally contrastive condition. Given that the tonal 

competitors rise and fall were not linear, growth curve analysis 

or a similar approach may better fit the data. This change may 

allow us to more fully capture the learning that occurred 

between week 1 and 15 and eventually model this change in 

behavior. Different manners of reduction in the lexicon, varying 

strength of connections, or the addition of stochastic noise may 

be found to be a superior modeling technique in future work 

interested in modeling L2 word recognition. 

In conclusion, we successfully adapted jTRACE to model 

adult L2 Mandarin learners’ spoken word recognition at week 

1 and week 15 of structured classroom learning. Our 

simulations matched eye-tracking data taken at the start and end 

of learning and showed that by adjusting tonal information in 

our TRACE-T phonology, we were able to capture the fixation 

proportions from our eye-tracking data. 
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