Generation of Fundamental Frequency Contours of Mandarin in HMM-based Speech Synthesis using Generation Process Model

Miaomiao Wang¹, Keikichi Hirose², Nobuaki Minematsu²

¹ Department of Electrical Engineering and Information Systems, the University of Tokyo, Tokyo
² Department of Information and Communication Engineering, the University of Tokyo, Tokyo

{wangm, hirose, mine}@gavo.t.u-tokyo.ac.jp

Abstract

The HMM-based speech synthesis system can produce high quality synthetic speech with flexible modeling of spectral and prosodic parameters. In this approach, short-term spectra, fundamental frequency (F_0) and duration are generated by multi-stream HMMs separately. However, the quality of synthetic speech degrades when feature vectors used in training are noisy. Among all noisy features, pitch tracking errors and corresponding flawed voiced/unvoiced (VU) decisions are the two key factors in voice quality problems. Pitch tracking errors occur more often in Mandarin vowels of Tone 3 and Tone 4, because the pitch of these vowels can be very low and sometimes treated as aperiodic signal. On the other hand, F_0 values in unvoiced regions, such as consonants, are normally defined as unavailable; it is then impossible to use standard HMMs for F_0 modeling. Currently a preferred method to solve this is to use a multi-space distribution HMM (MSD-HMM). In this approach, discrete distributions are used for modeling the VU decision and continuous Gaussian distributions are used for F_0 modeling within the voiced regions. Due to this assumption of undefined F_0 values in unvoiced regions and the special structure of MSD-HMM, the generated F_0 values are limited in accuracy. In this paper, an F_0 generation process model is used to estimate F_0 values in the region of pitch tracking errors, as well as in unvoiced regions. A prior knowledge of VU is imposed in each Mandarin phoneme and then used for VU decision. Thus the F_0 can be modeled within the standard HMM framework.

Index Terms: Mandarin speech synthesis, Generation process model, F_0 contour, HMM-based speech synthesis

1. Introduction

Recently in speech synthesis community, attention has been attracted by HMM-based speech synthesis, in which short-term spectra, fundamental frequency (F_0) and duration are simultaneously modeled by the corresponding HMMs. It has compact and flexible representation of voice characteristics and has been successfully applied to Text-To-Speech system in many different languages, e.g., Japanese, English and Mandarin [1]. Compared with the large corpus, example the unit selection based speech synthesis, HMM-based synthesis is statistically oriented and model based. The speech generated by the HMMs is fairly smooth and exhibits no concatenation glitches occur in unit-selection synthesis. To change the segmental or supra-segmental quality of the generated speech, we can modify HMM parameters flexibly [2, 3].

However, in HMM-based synthesis, voice quality degrades when acoustic features used in training are noisy or flawed. Among them, pitch tracking errors and companion flawed voiced or unvoiced decisions are key causes of voice quality degradation. Different approaches have been proposed to improve the pitch tracking performance. Many HMM-based systems use STRAIGHT [4], a high quality speech analysis-synthesis system, to extract acoustic parameters for HMM training. In [5], a voting method, which combines the IFAS [6] algorithm, a fixed-point analysis called TEMPO [7] and ESPS robust pitch tracking (RAPT) algorithm [8], to alleviate F_0 extraction errors such as F_0 halving and doubling, and voiced/unvoiced swapping. But still as we look into pitch tracking of Mandarin syllables, the tracking errors occur more often in vowels of Tone 3 and Tone 4. Because the pitch of those syllables can be very low and somewhat are not strong in periodicity. Thus the synthesized vowels sound very dry and hoarse, which greatly hurt the overall quality of synthesized speech.

Furthermore, in HMM-based synthesis, the modeling of F_0 is difficult due to the discontinuity of F_0 across voiced and unvoiced region. The multi-space distribution HMM (MSD-HMM) provides a solution to this problem by using a combination of discrete and continuous distributions [9] and it is now the default modeling approach in state-of-the-art HMM synthesis systems. However, although good performance can be achieved using MSDHMMs, this type of mixed distribution F_0 modeling has some issues arising from the discontinuities at the boundaries of unvoiced regions and the need to keep the discrete and continuous density regions distinct. Therefore, the use of MSDHMMs makes it more difficult to exploit standard techniques for HMM modeling, such as adaptation, which cannot be readily applied to the mixed discrete or continuous F_0 distributions.

From this consideration, we have developed a corpus-based method of synthesizing F_0 contours in the framework of the generation process model, which represents continues sentence F_0 contours as a superposition of tone components on phrase components [10]. By handing F_0 contours in the F_0 model framework, a clear relationship is obtainable between generated F_0 contours and their background linguistic (and para-/non-linguistic) information, enabling “flexible” control of prosodic features. And in Mandarin, there is a clear set of constraints on the phonetic structure of each syllable. Initials may be consonants or vowels, medials are vowels, and finals are vowels or nasals. Usually initials can be divided as voiced or unvoiced consonant, and all medials and finals are voiced in Mandarin. We can use the phoneme information for VU decision.

The rest of the paper is organized as follows. In section 2, the generation process model of F_0 contours for Mandarin utterances is introduced. In section 3, after a brief discussion of F_0 extraction errors in Mandarin syllable of Tone 3 and Tone 4, the conventional F_0 modelling and generation in HMM-based synthesis system is reviewed. In section 4, we present our method of F_0 modelling in HMM-based synthesis using generation process model. In section 5, experiment result is described and in section 6, we give our conclusion.
2. A Model for Generation Process of F_0 Contours of Mandarin Utterances

The generation process model is a command-response model that describes F_0 contours in the logarithmic scale as the super-position of phrase components, accent components (or tone components for tonal languages) and a baseline level F_b. The exact relationships between these components of an F_0 contour and the underlying linguistic information have been formulated by Fujisaki and his coworkers [10]. The model diagram for Mandarin is shown in Figure 1, where the phrase commands (impulses) produce phrase components through the phrase control mechanism, giving the global shape of the F_0 contour at sentence level, while the tone commands (pedestals) generate tone components through the tone control mechanism, characterizing the local F_0 changes. Both mechanisms are assumed to be critically-damped second-order linear systems.

In this model, the F_0 contour is expressed by

$$\log e F_0(t) = \log e F_b + \sum_{i=1}^{1} A_p G_p(t - T_{0i})$$

$$+ \sum_{j=1}^{1} A_a [G_a(t - T_{1j}) - G_a(t - T_{2j})]$$

$$G_p(t) = \begin{cases} a t \exp(-at), & \text{for } t \geq 0, \\ 0, & \text{for } t < 0 \end{cases}$$

$$G_a(t) = \begin{cases} \min[1 - (1 + \beta t) \exp(-\beta t), \gamma], & \text{for } t \geq 0, \\ 0, & \text{for } t < 0 \end{cases}$$

where $G_p(t)$ represents the impulse response function of the phrase control mechanism and $G_a(t)$ represents the step response function of the tone control mechanism.

The model consists of the following parameters: A_p and T_{0i} denote the magnitude and time of the ith phrase command respectively, while A_a, T_{1j} and T_{2j} denote the amplitude, onset time and offset time of the jth tone command respectively. The constants a, β and γ are set at their respective default values $3.0 (1/s)$, $2.0 (1/s)$ and 0.9 respectively in the current study.

Unlike most non-tone languages, e.g. English and Japanese, Mandarin requires both positive and negative tone commands. In Mandarin there are four lexical tones and a neutral tone: T1 (high tone), T2 (rising tone), T3 (low tone), T4 (falling tone) and T0 (neutral tone). These tones are attached to each syllable. As shown in Figure 1, T1 to T4 are assumed to correspond to their respective tone command patterns (intrinsic patterns): T1 (positive), T2 (negative followed by positive), T3 (negative) and T4 (positive followed by negative). For T2 and T4, the offset of the 1st tone command is assumed to coincide with the onset of the 2nd tone command. The command pattern for T0 is assumed to depend on the context and usually have reduced amplitudes.

Figure 1: A Functional model for the process of generating F_0 contours.

In recent HMM-based synthesis, which need large corpus for training, an automatic pitch tracking method is needed. And a common assumption is that F_0 has a continuous value in voiced regions and no value in unvoiced regions.

Firstly, ESPS RAPT algorithm is successful in automatic pitch tracking, and can alleviate F_0 extraction errors such as F_0 halving and doubling, and voiced/unvoiced swapping. But still as we look into pitch tracking of Mandarin syllables, the tracking errors occur more often in vowels of T3 and T4. Because the pitch of those syllables can be very low and somewhat are not strong in periodicity.

Figure 3: An example of F_0 contours of Mandarin syllable "sa4". From top to bottom: original wave, F_0 by manually check, F_0 calculated by RAPT algorithm.
Figure 4: An example of F0 contours of Mandarin syllable "zou3". From top to bottom: original wave, F0 by manually check, F0 calculated by RAPT algorithm.

Figure 3 and Figure 4 show comparison of target F0 and F0 extracted by ESPS RAPT algorithm. At the end of vowel “a” in T4 and diphthong “ou” in T3, pitch detection algorithm fails to find F0 in voiced region. Thus these fails in the syllables will lead to a shorter duration of the vowel and sometimes noisy sound inside a vowel when re-synthesis. And more unvoiced utterances will occur in the synthesized speech from a HMM-based TTS and lead to unnatural sound.

Furthermore, in HMM-based speech synthesis system, the Voiced/Unvoiced (VU) decision of each state is independently made based on the multi-space distribution of F0 parameters of that state. The MSD of F0 parameters of one state is estimated by traversing the decision tree by the contextual features till a leaf node. Due to some pitch tracking errors or some bad pronounced vowels, one leaf of the state belong to a vowel may contain more unvoiced occurrences than voiced occurrences. Thus, if choosing that leaf, the state will be decided as an unvoiced. Then the voice quality degrades not only because of the error pitch tracking, but also of the error VU decisions in HMM training.

In order to simultaneously model the discrete VU decision and the continuous F0 trajectories, multi-space distribution HMMs (MSD-HMM) are commonly used [9]. The state output distribution in an MSD-HMM is

\[b_\theta (o) = \begin{cases} c_v N(\mu_v, \sigma_v), & o \in \text{voiced region}, \\ c_u N(\mu_u, \sigma_u), & o \in \text{unvoiced region} \end{cases} \]

where \(o \) is the observation at state \(\theta \), \(c_v \) and \(c_u \) are the probabilities of voiced and unvoiced regions, \(\mu_v \) and \(\mu_u \) are the means, and \(\sigma_v \) and \(\sigma_u \) are the variances of Gaussian distribution of F0 in the voiced regions. This MSD-HMM framework results in some inherent limitations. Since \(b_\theta (o) \) represents a continuous density in voiced regions and a discrete probability mass in unvoiced regions, each observation can only be either voiced or unvoiced, but not both at the same time. Consequently, during the forward-backward calculation for any F0 stream in training, the state posterior occupancy will always be wholly assigned to one of the two components depending on the voicing condition of the observation. This hard assignment limits the ability of the unvoiced component to learn from unvoiced data and vice versa, and it prevents any possibility of using a soft assignment to reduce the effect of F0 estimation errors.

Prosodic features cover a wider time span than segmental features, and should be treated differently.

4. F0 Modelling in HMM-based TTS using Generation Process Model

The previous sections highlighted the Generation Process Model which can generate continuous F0 contours, handling F0 contours with their background linguistic knowledge and the problems encountered in HMM-based TTS when F0 values were mis-calculated in voiced regions, discrete probability mass for unvoiced regions. In the model that we proposed in this section, we used Generation Process Model to generate continuous F0 contours and assumed to exist in unvoiced regions, together with the VU decision of phoneme information.

In order to investigate the validity of our proposed method of continuous F0 contours generation when it is applied in a HMM-based TTS system, a full speech synthesis algorithm was constructed as shown in Fig. 5.

Here we defined Mandarin phoneme with either voiced or unvoiced as shown in Table 1. In some respects, the phonemic structure of Mandarin is quite simple. It’s either a consonant-vowel (CV) structure or single vowel (V) structure. Mandarin contains 21 consonants, 5 semi-vowels, 4 diphthong vowels, and 14 monophthong vowels. We can define them either voiced or unvoiced depending on the pervious knowledge of their waveforms.

After labeling each phoneme with VU decision, together with the F0 values estimated from an ESPS waves-based F0 contours, Fujisaki parameters will be extracted by a FujiPara-
Editor [11]. Then a continuous \(F_0 \) contour can be generated using Generation Process Model. We could select the continuous \(F_0 \) contour as the \(F_0 \) observation for the unvoiced frames.

<table>
<thead>
<tr>
<th>Unvoiced Initials</th>
<th>b, c, ch, d, f, g, h, j, k, p, q, s, sh, t, x, z, zh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voiced Initials</td>
<td>ga, ge, go, l, m, n, r, w, y</td>
</tr>
<tr>
<td>Voiced Tonal Finals</td>
<td>a, ai, an, ang, ao, c, ci, en, eng, er, i, ia, ib, ian,iang, iao, ie, if, in, ing,iong, iu, o, on, ou, u, ua, uai, uan, uang, ui, un, uo, v, van, ve, vn</td>
</tr>
</tbody>
</table>

Together with extracted spectral parameters, the continuous \(F_0 \) contours will be applied to a HMM-based TTS. In the synthesis stage, the \(VU \) decision will be made based on the phonemic and white noise will be used as an unvoiced excitation source to synthesize the unvoiced frames.

By making the continuous \(F_0 \) using the generation process model, the problems in section 3 are effectively addressed. Since the mis-calculated \(F_0 \) can be fixed before training, and also there is only one single \(F_0 \) stream, there are no redundant component weights parameters.

5. Experiment

To evaluate the performance of our proposed method compare to the MSDHMM, a manually checked female speaker’s corpus is used for both methods. Prof. Renhua Wang, from the University of Science and Technology of China provided us the Mandarin speech corpus. The labels of unvoiced initials are used as the boundaries of \(VU \) switch. The input text to the system includes symbols on pronunciation and prosodic boundaries, which can be obtained from orthogonal text using an NLP system, developed at University of Science and Technology of China [12].

As for the HMM-based method, the HMM-based Speech Synthesis toolkit (HTS Ver.2.1) is used [13]. The MSDHMM generates \(F_0 \) together with 24-order mel-cepstrum coefficients.

The ESPS RAPT algorithm is used for automatic \(F_0 \) extraction. Before training, we found that all most 22.37% syllables of the total have the error \(VU \) decisions. And among all those errors, 33% failures are occurred in T4 and 39% are in T3. After training process of MSDHMM, this error will be increased.

![Figure 6: Error VU decisions for Mandarin syllables in different tones](image)

We use the FujiParaEditor to find continuous \(F_0 \) contours for the corpus. Figure 7 shows an example of our method compared to the conventional pitch tracking method. We can see that during a voiced vowel ‘i’ in T4, the conventional method failed to find \(F_0 \) values in the voiced regions.

![Figure 7: An example of the continuous \(F_0 \) contours for the Mandarin word “1+i4 sh+i2”.](image)

6. Conclusion

In this paper, we proposed a method to generate continuous \(F_0 \) contours for HMM-based speech synthesis by applying the generation process model. It can fix the \(VU \) errors of \(F_0 \) before training, and assume that \(F_0 \) values are exist in unvoiced regions so there is only single stream of \(F_0 \) in HMM. Then there are no redundant component weights parameters. A prior linguistic knowledge of phonemes of Mandarin is used for the \(VU \) decision at the synthesis stage. The \(VU \) errors are fixed before HMM training. And compared to MSDHMM, there will be no more unvoiced frames during the voiced regions.

7. References

http://hts.sp.nitech.ac.jp.