An automatic method for revising ill-formed sentences
based on N-grams

Theologos Athanaselis, Stelios Bakamidis, Ioannis Dologlou

Institute for Language and Speech processing (ILSP)
Artemidos 6 & Epidavrou GR-151 25 Maroussi Greece
{tathana;bakam;ydol}@ilsp.gr

Abstract

A good indicator of whether a person really knows the context of language is the ability to use in correct order the appropriate words in a sentence. The “scrambled” words cause a meaningless and ill formed sentences. Since the language model, is extracted from a large text corpus, it encodes the local dependencies of words. The word order errors usually violated the syntactic rules locally and therefore the N-grams can be used in order to fix ill-formed sentences. This paper presents an approach for repairing word order errors in text by reordering words in a sentence and choosing the version that maximizes the number of trigram hits according to a language model. The novelty of this method concerns the use of an efficient confusion matrix technique for reordering the words. The comparative advantage of this method is that works with a large set of words, and avoids the laborious and costly process of collecting word order errors for creating error patterns.

1. Introduction

Writers sometimes make errors that violate language’s grammar e.g. sentences with wrong word order. What appears to be given in all languages is that words can not be randomly ordered in sentences, but that they must be arranged in certain ways, both globally and locally. For example, in English the normal way of ordering elements is subject, verb, object (Boy meets girl) [1]. Subjects and objects are composed of noun phrases, and within each noun phrase are elements such as articles, adjectives, and relative clauses associated with the nouns that head the phrase (the tall woman who is wearing a hat). Native speakers of a language seem to have a sense about the order of constituents of a phrase, and such knowledge appears to be outside of what one learns in school [2].

Automatic grammar checking is traditionally done by manually written rules, constructed by computer linguists. Methods for detecting grammatical errors without manually constructed rules have been presented before. Atwell [3] uses the probabilities in a statistical part-of-speech tagger, detecting errors as low probability part of speech sequences. Golding [4] showed how methods used for decision lists and Bayesian classifiers could be adapted to detect errors resulting from common spelling confusions among sets such as “there”, “their” and “they’re”. He extracted contexts from correct usage of each confusable word in a training corpus and then identified a new occurrence as an error when it matched the wrong context. Chodorow and Leacock [5] suggested an unsupervised method for detecting grammatical errors by inferring negative evidence from edited textual corpora. Heift [6,7] released the German Tutor, an intelligent language tutoring system where word order errors are diagnosed by string comparison of base lexical forms. Bigert and Knutsson [8] presented how a new text is compared to known correct text and deviations from the norm are flagged as suspected errors. Sjobergh [9] introduced a method of grammar errors recognition by adding errors to a lot of (mostly error free) unannotated text and by using a machine learning algorithm.

Unlike most of the approaches, the proposed method does not work only with a limited set of words. The use of parser and/or tagger is not necessary. Also, it does not need a manual collection of written rules since they are outlined by the statistical language model. A comparative advantage of this method is that avoids the laborious and costly process of collecting word order errors for creating error patterns. Finally, the performance of the method does not depend on the word order patterns which vary from language to language.

The paper is organized as follows: The language model in section 2. The architecture of the entire system follows in section 3. The 4th section describes the technique for reducing the permutations. The 5th section specifies the method that is used for searching valid trigrams in a sentence. The results of using TOEFL experimental scheme are discussed in section 6. Finally, the concluding remarks are made in section 7.

2. Language model

The language model (LM) that is used subsequently is the standard statistical N-grams. The N-grams provide an estimate of $P(W)$, the probability of observed word sequence W. Assuming that the probability of a given word in an utterance depends on the finite number of preceding words, the probability of N-word string can be written as:

$$P(W) = \prod_{i=1}^{N} P(w_i | w_{i-1}, w_{i-2}, ..., w_{i-(N-1)})$$

N-grams simultaneously encode syntax, semantics and pragmatics and they concentrate on local dependencies [10]. This makes them very effective for languages where word order is important and the strongest contextual effects tend to come from near neighbours. A statistical language model describes probabilistically the constraints on word order found in language: typical word sequences are assigned high probabilities, while atypical ones are assigned low probabilities. N-grams have also been chosen, because the N-gram probability distributions can be computed directly from text data, yielding hence no requirement to have explicit linguistic rules (e.g. formal grammars). The statistical language model consists of bigrams (N=2) and trigrams (N=3).
3. System’s Architecture

This work presents a new method for detecting and repairing sentences with word order errors that is based on the statistical language model (N-grams). It is straightforward that the best way for reconstructing a sentence with word order errors is to reorder the words. However, the question is how it can be achieved without knowing the attribute of each word. Many techniques have been developed in the past to cope with this problem using a grammar parser and rules. However, the success rates reported in the literature are in fact low. A way for reordering the words is to use all the possible permutations. The crucial drawback of this approach is that given a sentence with length N words the number of all permutations is N!. This number is very large and seems to be restrictive for further processing. The novelty of the proposed method concerns the use of a technique for filtering the initial number of permutations. The process of repairing sentences with word-order errors incorporates the following tools:

- a simple, and efficient confusion matrix technique
- and language model’s trigrams and bigrams.

Consequently, the correctness of each sentence depends on the number of valid trigrams. Therefore, this method evaluates the correctness of each sentence after filtering, and provides as a result, a sentence with the same words but in correct order.

![Figure 1: The architecture of the proposed system.](image)

4. Filtering the permutations

Considering that an ungrammatical sentence includes the correct words but in wrong order, it is plausible that generating all the permuted sentences (words reordering) one of them will be the correct sentence (words in correct order). The question here is how feasible is to deal with all the permutations for sentences with large number of words. Therefore, a filtering process of all possible permutations is necessary. The filtering involves the construction of a confusion matrix NxN in order to extract possible permuted sentences.

Given a sentence \(a = [w[0], w[1],..., w[n-1], w[n]] \) with N words, a confusion matrix \(A \in \mathbb{R}^{N \times N} \) can be constructed,

<table>
<thead>
<tr>
<th>WORD</th>
<th>w[0]</th>
<th>w[1]</th>
<th>w[n]</th>
</tr>
</thead>
<tbody>
<tr>
<td>w[0]</td>
<td>P[0,0]</td>
<td>P[0,1]</td>
<td>P[0,n]</td>
</tr>
<tr>
<td>w[1]</td>
<td>P[1,0]</td>
<td>P[1,1]</td>
<td>P[n,1]</td>
</tr>
<tr>
<td>w[n]</td>
<td>P[n,0]</td>
<td>P[n,1]</td>
<td>P[n,n]</td>
</tr>
</tbody>
</table>

Table 1: Construction of the confusion matrix NxN, for a given sentence. \(a = [w[0], w[1],..., w[n-1], w[n]] \).

The size of the matrix depends on the length of the sentence. The objective of this confusion matrix is to extract the valid bigrams according to the language model. The element \(P[i,j] \) indicates the validness of each pair of words \((w[i], w[j]) \) according to the list of language model’s bigrams. If a pair of two words \((w[i], w[j]) \) cannot be found in the list of language model bigrams then the corresponding \(P[i,j] \) is taken equal to 0 otherwise it is equal to one. Hereafter, the pair of words with \(P[i,j] \) equals to 1 is called as valid bigram. Note that, the number of valid bigrams is \(M \) lower than the size of the confusion matrix which is \(N^2 \), since all possible pairs of words are not valid according to the language model.

In order to generate permuted sentences using the valid bigrams all the possible words’ sequence must be found. This is the search problem and its solution is the domain of this filtering process.

![Figure 2: Illustration of the lattice with N-layers and N states.](image)

As with all the search problems there are many approaches. In this paper a left to right approach is used. To understand how it works the permutation filtering process, imagine a network of \(N \) layers with \(N \) states. The factor
5. Searching for valid trigrams

The prime function of this approach is to decompose any input sentence into a set of trigrams. To do so, a block of words is selected. In order to extract the trigrams of the input sentence, the size of each block is typically set to 3 words, and blocks are normally overlapped by two words. Therefore, an input sentence of length N includes N-2 trigrams.

The second step of this method involves the search for valid trigrams for each sentence. A probability is assigned to a valid trigram, which is derived by the frequency of its occurrences in the corpus.

In the third step of this method the number of valid trigrams per each permuted sentence is calculated. Considering that the sentence with no word-order errors has the maximum number of valid trigrams, it is expected that any other permuted sentence will have less valid trigrams. Although some of the sentence’s trigrams may be typically correct, it is possible not to be included into the list of LM’s trigrams. The plethora of LM’s trigrams relies on the quality of corpus. The lack of these valid trigrams does not affect the performance of the method since the corresponding trigrams of the permuted sentence will not be included into LM as well. The criterion for ranking all the permuted sentences is the number of valid trigrams.

The system provides as an output, a sentence with the maximum number of valid trigrams. In case where two or more sentences have the same number of valid trigrams a new distance metric should be defined. This distance metric is based on the total probability of the trigrams. The total probability is computed by adding the probability of each trigram, whereas the probability of non valid trigrams is assigned to zero. Therefore the sentence with the maximum probability is the system’s response.

6. Experimentation

6.1. Experimental scheme

The experimentation involves a test set of 310 sentences of 2347 words. These sentences have been selected randomly from the section “Structure” of TOEFL past exams [11,12]. The TOEFL test refers to the Test of English as a Foreign Language. The TOEFL program is designed to measure the ability of non-native speakers to read, write and understand English as used at college and university in North America. The Structure section focuses on recognizing vocabulary, grammar and proper usage of standard written English. There are two types of questions in the Structure section of the TOEFL test. One question type presents candidates with a sentence containing a blank line. Test-takers must choose a word or phrase that appropriately fills in the blank. The other question type consists of complete sentences with four separate underlined words. Candidates must choose which of the four underlined answer choices contains an error in grammar or usage. For experimental purposes our test set consists of sentences for TOEFL’s word order practice. These errors are selected from the list of the answer choices but are not the correct ones. Note that the test sentences are not included into the training set of the statistical language model that is used as tool for the proposed method. The goal of the experimental scheme is to confirm that the outcome of the method (sentence with best score) is the TOEFL’s correct answer.

6.2. Errors profile

A report of gathered data of this study is presented in the current section. It discusses a categorization of sentences found in the test set according to the length and the type of word order error [13].

The histogram below depicts the number of corpus’ sentences as a function of their length. It is shown that the majority of the corpus contains sentences of length between 4 and 12 words.

Figure 3: Frequency of the sentences with different length.

In the TOEFL test set of 2347 words, 315 instances of word order errors were found. The test sentences display 5 different word order errors [14,15]. The word order errors concern the transposition of Verbs, Nouns, Adjectives, Adverbs, and Pronouns, thus violating the sentences’ word order constraints (Izumi et al., 2003). The most common errors are the Verb transposition with 35.0% and the adverb transpositions with 30.3% in total. The errors with adjectives transpositions present a lower percentage (19.9%). Noun transpositions are less frequent with 11.4%. The errors with Pronouns are least frequent with 3.4%.
6.3. Results

The evaluation of this method was conducted by comparing the output of the system with the correct answer choice that is indicated by TOEFL. The findings from the experimentation show that 296 sentences (95.16% in total) have been repaired using the proposed method (True Corrections). On the other hand, the result for 11 sentences (3.54% in total) were false (False Corrections) and for 4 sentences (1.29% in total) the system was unable to rank the sentences (all scores were very close), (Absent Corrections). In case of “False Corrections” the system’s response is different from the correct sentence. The incorrect output of the system can be explained considering that some TOEFL words are not included into the BNC vocabulary, hence some of the sentences’ trigrams are considered as invalid.

7. Conclusions

Recognising and repairing sentences with word order errors is a challenge ready to be addressed. The proposed method is effective in repairing erroneous sentences. Therefore the method can be adopted by a grammar checker as a word order repairing tool. The necessity of the grammar checkers in educational purposes and e-learning is more than evident. It is interesting that the system does not only detect errors as other approaches do but also repairs the ill-formed sentences. The findings show that most of the sentences can be repaired by this method independently from the sentence’s length and the type of word order errors. One of the key questions is whether the use of language model can correct other grammatical errors such as subject-verb disagreement. The issue certainly invites research.

8. References