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Abstract 

Creaky voice carries important linguistic and paralinguistic 
information.  Parameters based on autocorrelation of the 
glottal excitation waveform are proposed for automatic 
detection of creaky voice in spontaneous speech.  Analysis 
results show the ratio of the first two peaks of the 
autocorrelation function as a primary parameter to detect 
creaky voice. 

1. Introduction 
“Creaky voice” has many other terminologies, such as “creak”, 
“vocal fry”, “glottal fry”, “laryngealization”, “glottalization”, 
and “pulse register phonation”, used in several research areas 
(like Linguistics, Physiology, and Phonetics) [1,2]. 

Creaky voice is defined as “… a train of discrete laryngeal 
excitations, or “pulses”, of extremely low frequency (7 to about 
78 Hz), with almost complete damping of the vocal tract 
between excitations.” (Hollien 66 cited in [1]). “The auditory 
effect is of a rapid series of taps, like a stick being run along a 
railing.” (Catford 64 cited in [2]). 

Creaky phonation carries many linguistic and paralinguistic 
information, depending on the language.  For example, 
contrast between creaky and modal voicing among vowels and 
nasals is particularly common in some American Indian 
languages [3].  In [4,5], relationship between different 
phonation types and paralinguistic information like emotions 
and attitudes are reported for English.  Strong correlations 
were reported between creaky voice and perception of 
relaxed/stressed, sad/happy, and bored/interested.  In Japanese, 
expressive pressed voice that is frequently realized by creaky 
phonation also carries important paralinguistic information 
such as attitudes, emotional states and emphasis [6]. 

Further, in creaky segments, periodicity is disturbed and the 
pitch extraction becomes difficult, affecting the subsequent 
prosodic analysis, like intonation.  Tendency of creaky 
segments for specific tone types is reported in [7] for phrase 
finals in Japanese. 

In the JST/CREST ESP Project [8], one of the goals is an 
expressive speech synthesizer based on unit selection, using a 
large database of spontaneous speech.  For this purpose, labels 
of voice qualities (phonation types) become as important as 
prosodic labels.  With the goal of doing automatic labeling of 
voice quality on a large speech database, in the present research, 
we focus on the automatic detection of creaky phonation. 
 
 

2. Acoustic features of creaky voice 
A lot of research has been conducted on the acoustical 

analysis of creaky voice.  Among them, we can cite 
disturbance of periodicity in the time domain (jitter and 
shimmer) [11], feature extraction in the power spectrum [3,10], 
and parameterization of the glottal excitation waveform 
obtained from vocal tract inverse filtering of the speech signal 
[4,9]. 

Jitter (perturbation in the fundamental frequency) and 
shimmer (perturbation in the amplitude) are two measures of 
perturbation in the periodicity in the time axis.  There are 
many works [11] showing their correlation with perceptual 
roughness.  However, direct correlation with creaky phonation 
is not reported, since creak can also be periodic. 
 [3] describes that creaky phonation has the following 
features compared to modal phonation: non-periodic glottal 
pulses, lower power, lower spectral slope, low F0. Among them, 
the spectral slope is reported to be the most important 
parameter to discriminate between different phonation types.  
In [3], the spectral slope is estimated based on harmonic 
components of the power spectrum.  [10] also estimates the 
spectral slope based on harmonics of the spectrum, but 
considering the effects of the formants.  However, this kind of 
method using harmonic components could not be appropriate 
for non-periodic signals.  
 Another approach for discriminating phonation types is 
based on speech production.  The basic idea is removing the 
effects of the vocal tract resonances from the speech signal by 
inverse filtering techniques, to obtain the glottal excitation 
waveform.  In the research field of speech synthesis based on 
speech production models, the glottal excitation waveform is 
parameterized according to the shape of each glottal pulse.  
[4,9] reports successful synthesis of different voice qualities, 
including creaky voice, by controling the parameters of the LF 
model.   

 However, automatic detection of creaky voice is not as 
widely reported.  Perhaps because the glottal excitation is 
irregular and automatic detection becomes difficult. 

3. Autocorrelation-based parameters 
In the present research, in order to avoid the detection of 
excitation pulses in the temporal domain, we propose a 
parameterization of phonation type features based on the 
autocorrelation of the glottal excitation waveform. 

3.1. Estimation of the glottal excitation waveform 

The estimation of the glottal excitation waveform is based on 
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the method proposed in [12].  First, the speech signal is 
high-pass filtered at 60 Hz in order to prevent the glottal 
waveform from gradually rising (or falling).  Then, the glottal 
contribution to the speech spectrum is preliminarily estimated 
by applying LPC-analysis of order 1.  We refer to the 
estimated coefficient as the adaptive pre-emphasis (APE) 
coefficient.  Next, the speech signal is pre-emphasized by 
using APE, and LPC-analysis of order 18 (with sampling 
frequency of 16000 Hz) is applied on the pre-emphasized 
signal.  The obtained LPC coefficients are used for inverse 
filtering of the high-pass filtered speech signal.  The residual 
signal is treated as the glottal excitation waveform hereinafter. 

3.2. Normalized Autocorrelation Function (NACF) 

Before estimating the autocorrelation function (ACF), the 
glottal excitation waveform is low-pass filtered at 2 kHz, in 
order to make the ACF peak detection easier. 
 An important point to be taken into account is the window 
size for ACF estimation.  Since creaky voice usually appears 
in low fundamental frequencies, the window size should be 
long enough to cover at least two excitation pulses.  On the 
other hand, a too long window size is not appropriate for 
segments with high and changing pitch.  Therefore, we 
decided to use an analysis window with variable length.   
 A two-step ACF estimation is used to adjust the window 
length adaptively.  First, ACF is estimated in an 80 ms 
window.  And then, the time lag of the maximum peak is 
extracted and multiplied by four, to be used as the new window 
size.  Here, the new window size was clipped to lie in the 
interval between 16 ms and 80 ms. 
 The obtained ACF is normalized according to the following 
expression: 

)0(
)()(

Rxx
LRxx

LN
NLNAC
−

= ,           (1) 

where N is the number of samples of the frame window, L is 
number of samples of the autocorrelation lag, and Rxx is the 
autocorrelation function.  Figure 1 shows examples of glottal 
excitation waveforms and normalized autocorrelation functions 

obtained using the methods described above. 
 For modal phonation (a), a clear periodicity can be 
observed; the NACF peaks are close to 1 value, and there are no 
small peaks between the time lag 0 and the first big peak.  (b) 
and (c) show examples of creaky voice with 
big-small-big-small and short-long-short-long sequences 
(jitter/shimmer) of the glottal pulses.  (b) shows a smaller 
peak between the time lag 0 and the maximum peak.  The 
magnitude of this small peak becomes lower and the width of 
this peak becomes larger, as the jitter/shimmer becomes 
stronger, such that it divides in two, as shown in (c).  In the 
modal phonation example, it can also be observed that the first 
two peaks (closer to time lag 0) have values close to 1.  (d) 
shows an example of (non double-periodic) creak, where only 
one big NACF peak can be observed.  However, a narrow 
width is observed for this peak, because of the impulse-like 
shape of the glottal excitation for creak phonation. 

3.3. NACF-based parameters 

Based on visual inspection of the NACF of the glottal 
excitation waveforms of modal and creaky phonations as 
described in the previous section, we decided to use the first 
two peaks (called P1 and P2, from the time lag 0) in the NACF, 
to characterize different phonation types.  A threshold of 0.2 is 
used to detect peaks in NACF.  The following parameters are 
roposed based on these two peaks (P1, P2). p

 
Peak magnitude (NAC value) ratio:  • 

• 

• 

• 

• 

• 

NACR = 1000*NAC(P2) / NAC(P1)     (2) 
Peak position (time lag) ratio: 
TLR = 2000*TL(P2) / TL(P1)        (3) 

Peak width ratio: 
WR = 1000*W(P2) / W(P1)       (4) 

Maximum peak magnitude:  
NACmax = 1000*NAC(Pmax)       (5) 

Maximum peak position: 
TLmax = TL(Pmax)         (6) 

Maximum peak width: 
Wmax = W(Pmax)          (7) 
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Figure 1: Speech waveform, glottal excitation waveform and NACF for Modal and Creaky phonation 

 
 



A scaling factor of 1000 is multiplied in the NACR, TLR, 
WR, and NACmax parameters for data storage convenience, 
allowing their storage in integer format.  Tables 1 and 2 show 
the expected behavior of the proposed parameters for each 
phonation type.  For single-periodicity, all the ratios (NACR, 
TLR, WR) and NACmax are expected to have values close to 
1000.  For double-periodicity, NACR > 1000; NACmax < 
1000; if jitter is strong, TLR ≠ 1000; and if jitter or shimmer is 
strong, WR < 1000.   

For low F0 creaky phonation with non-double periodicity, 
i.e., large interval between excitation pulses (big TLmax), there 
are cases where only one peak can be detected.  Therefore, the 
ratio-based parameters cannot be used to represent these signals.  
However, a small value of Wmax is expected in these cases, 
since creaky phonation has narrow (impulse-like) excitation 
pulses (Table 2).  
 
Table 1: Expected behavior of the parameters in modal and 
double periodic signals. 

 NACR TLR WR NACmax
(Single) Periodicity 

Modal ≅ 1000 ≅ 1000 ≅ 1000 ≅ 1000 

Double Periodicity 
Creaky/Rough > 1000 ≠ 1000 < 1000 < 1000 

 
Table 2: Expected behavior of the parameters in low 
fundamental frequency creaky phonation. 

 TLmax Wmax 
Low Frequency 

Creaky Big Small 

 

4. Analysis and evaluation of the proposed 
parameters 

As speech data for evaluation, we used the same dataset 
analyzed in [7], containing 404 phrase final syllables 

segmented from natural spontaneous speech of a female adult 
speaker.  Each syllable was labeled in terms of Creaky(C), 
Aspirated(A) or Modal(M), looking at the waveform and 
hearing the segments.  The parameters proposed in Section 3 
were estimated in all frames (5619) of the annotated speech 
intervals. 

As a preliminary evaluation, a decision tree was 
constructed for each of the categories {C,A,M}, using the R 
Package[12].  The tree resulted in 91.5% of correct 
identification.  Specifically for Creaky category, deletion error 
was 13.7%, while substitution error was 7.9%.  However, only 
the parameter set {NACmax, NACR, TLR} was used in the 
constructed decision tree.  A detailed analysis of each 
parameter was then conducted to verify their behavior in each 
category. 

Figure 2 shows the distributions of each parameter 
separated for each voice quality category.  The data of all 
panels are arranged according to increasing order of NACR.  It 
can be observed from the panels that the data of NACR, TLR, 
WR and NACmax for Modal category are concentrated around 
the value 1000, as expected in Table 1.  In order to better 
visualize the distributions of each category, 3155 frames of the 
Modal category in the interval 935 < NACR < 975 were 
removed from the panels, since the distributions of all 
parameters showed regularity relative to the adjacent portions.   

Dashed lines were placed separating the regions where 
NACR < 1000 and NACR > 1000, for the categories C (C2: 268 
frames, and C3: 630 frames) and M (M1:961+3155 frames and 
M2: 86 frames), resulting in a clear separation of data in both 
WR and TLmax parameters.  The features of C2 are similar to 
those of M1, while the features of M2 are similar to those of C3.  
Part of C2 and M2 data are frames close to the boundaries 
between creaky and modal regions.  Also part of M2 data are 
frames close to the boundaries between modal and silence, 
where laryngealizations frequently occur.  TLmax is the 
autocorrelation time lag of the maximum peak, and this value is 
also a base value for F0 estimation.  It is clear that the sets 
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Figure 2: Distributions of autocorrelation-based parameters for each voice quality category (Aspirated, Creaky, and Modal).  

Abscissas are number of frames. Ordinates of NACR, TLR, WR and NACmax have values scaled by 1000. 

 
 



{C2,M1} and {C3,M2} have distinct distributions in the TLmax 
panel.  This is probably because of double-periodicity in 
{C3,M2}.  This result can also be used for double-pitch error 
correction, since double-periodicity consistently occurs when 
NACR > 1000.   

A strong inverse correlation can be observed between 
NACR and WR.  This could be a reason why WR was excluded 
by the decision tree algorithm.   

The subgroup C1 (84 frames), in the category C, represents 
the frames where only one peak was detected; this means that 
no data can be plotted in the ratio-based parameters (NACR, 
TLR and WR).  NACmax shows lower values for C1 compared 
to M. 
 Unfortunately, no clear separation can be noted in the 
distributions of Wmax parameter.  It is expected that more 
significant differences will appear for male speaker voices, 
especially between creaky voice and lax voice with low 
fundamental frequencies.  Analyses are also being conducted 
for male speakers. 
 No clear discrimination can be observed between Creaky 
and Aspirated categories except for the TLR parameter.  
However, only 33% (47/143) of the Aspirated frames can be 
separated by using a threshold of 650 for TLR.  As a solution 
to improve the discrimination between these categories, we 
propose that the coefficient of the adaptive pre-emphasis (APE, 
described in Section 3.1) can be used as a distinctive parameter, 
since aspirated speech intervals tend to be stronger in the high 
frequency bands, resulting in a lower magnitude for the 
pre-emphasis coefficient.  Figure 3 shows the distribution of 
APE for each category.   
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Figure 3: Distributions of Adaptive Pre-emphasis coefficient 
(APE) parameter. 

72% (102/143) of the Aspirated frames are correctly 
separated by using an APE threshold of 800.  84% (121/143) 
can be reached if the APE threshold is set to 900.  Other 
parameters should be evaluated in the discrimination between 
Creaky and Aspirated phonations. 

Removing the vocal tract effect (by inverse filtering) to 
obtain glottal excitation is a convenient approach to analyze 
phonation types from a physiological viewpoint.  However, 
from a perceptual viewpoint, it is hard to say that the human ear 
realizes LPC inverse filtering to separate between the glottal 
source and vocal tract components.  From this perspective, an 
auditory model could be used to evaluate phonation type 
identification without applying inverse filtering on the input 
speech signal. 

5. Conclusion 
Parameters based on the normalized autocorrelation function of 
glottal excitation waveform were investigated with the aim of  
automatically detecting creaky voice segments.  Preliminary 
evaluation of the proposed parameters showed good 
performance in the automatic detection of creaky voice.  
Among the parameters, the ratio between the first two 
autocorrelation peaks (NACR) was found to be the primary 
parameter to discriminate between modal and creaky phonation.  
Once creaky segments are detected, the next step is to verify if 
these segments are really perceived as rough.  Another topic 
to be investigated is how pitch is perceived in the creaky 
intervals. 
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