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Abstract
Over the years, language technology has become a valu-

able asset for foreign language learners. In this work, we in-
troduce pronunciation feedback scoring systems for 6-12 year
old children. The scoring systems were embedded in second-
language (L2) English learning games that were designed to
prompt children to repeat words. Speech and phone recognition
models were used to validate utterances and extract phoneme-
wise statistics, which were used to compute feedback scores
of 0-5 stars. The scoring systems were trained to mimic the
preferences of a single expert who evaluated all the training
data. Our automatic scoring system reached a correlation of
0.59 to the human annotation. This system was also tested in a
learning experiment, where EEG measurements indicated that
children who played our learning game with our scoring engine
for pronunciation feedback improved their perception of speech
sounds. We release the game codes and the speech data used to
train the scoring system.
Index Terms: CALL, CAPT Learning games, Pronunciation
assessment; DNN; bilingual models.

1. Introduction
Carefully designed computer games have great potential to help
children in foreign or second-language (L2) learning, includ-
ing learning new words and practicing the pronunciation of new
speech sounds with sufficient repetitions. The aim of the Say
It Again, Kid! (SIAK) project was to investigate the effects of
learning games and automatic pronunciation feedback on learn-
ing English as a foreign language [1, 2, 3]. We studied these ef-
fects by comparing learning in the game providing feedback and
in a non-game condition without feedback but with the same
amount of pronunciation training as in the game. The hypoth-
esis was that using an engaging learning game with automatic
feedback on pronunciation quality facilitates learning. As the
study group consisted of children who were just beginning to
learn English, and were only starting to grasp the pronuncia-
tion of new speech sounds, evaluating their pronunciation be-
fore and after the gaming period was not considered realistic.
Instead, we measured the development of representations for
new speech sounds in the brain.

Computer-assisted pronunciation training (CAPT) with lan-
guage learning games requires fast and sufficiently accurate
feedback with a system that does not require adaptation for a
new player. The accuracy for each individual utterance is not
as critical as in language skills assessment software. As long as
there is enough consistency in the feedback, it is more impor-
tant that the latency for feedback does not deteriorate the game
experience. Our work concentrates on providing 1) an auto-
matic scoring mechanism suitable for beginner and intermedi-

ate learners of a new language and 2) learning games suitable
for regular sessions where the amount of gameplay and nature
of tasks could be controlled for learning experiments.

This paper gives an overview of the data we collected, pro-
nunciation scoring systems we built and describes experiments
in validating their performance in real world learning experi-
ments with children.

2. Related work
CAPT systems use computational measures to analyse speech
segments in order to give a score or meaningful feedback about
single mispronunciations or mispronunciation patterns. In a
practical use case, the feedback is either immediate, or given
as an analysis to the user or the user’s teacher.

The majority of the early generation of CAPT systems were
based on deducing some goodness score from likelihood scores
derived from the ASR acoustic model set [4], but these reached
their limit when the differences between correct and false pro-
nunciations are subtler than the traditional ASR features could
capture [5]. Several proposed systems first use ASR methods
for creating a forced alignment of a canonical transcription of
phonetic segments, and analyse these segments individually, al-
lowing the use of different parameterisation of speech for each
step [6, 7]. Often the alignment is done with extended recog-
nition networks, that take into account typical pronunciation
mistake patterns [8]. Several proposed systems use Recurrent
Neural Networks (RNN) for predicting mispronunciations from
features that represent articulatory or phonological properties
of individual phonetic segments [9, 10, 11]. An upper limit for
the performance of these mispronunciation detection systems is
the level of disagreement between human evaluators. The dis-
agreement has been reported to be around 20% of all the human
labelled mispronunciations [12].

For longer evaluation samples, from 3 minutes of speech
onwards, computational systems to evaluate spoken L2 lan-
guage skills have been found to correlate well with human scor-
ing. Many systems use ASR for extracting contents of semi-
spontaneous utterances and compute features like vocabulary
size, number of pauses and phone posterior statistics and extract
a score from these [13, 14]. Sometimes scoring based on pure
phonological control may be desirable. In constrained tasks like
reading prompts, phone posteriors alone can be used to extract
a score for a speaker [15, 16]. The mapping from statistics to
a score is done with neural networks, Support Vector Regres-
sors (SVR), Gaussian Processes or even just linear regression.
For shadowing tasks, where the user is repeating utterances af-
ter a model voice prompt, Dynamic Time Warping (DTW) path
cost of DNN outputs has correlated well with human evaluators’
scores [17].
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Again the upper limit for the performance of a CAPT scor-
ing system is the human annotators’ disagreement. For shorter
speech segments, the correlation between human evaluators -
the inter-annotator agreement - starts to degrade, for example
from a correlation of 0.9 for speaker evaluation based on the
complete speech pool, to 0.6-0.7 for single items (single utter-
ance or a collection of utterances consisting of a reply to a single
prompt) [13, 18, 19]. For evaluation of samples that are shorter
than a minute, let alone for items as short as a single word of one
or two phonemes, the inter-annotator agreement is a limiting
factor for the performance of the computational grading system
that aims for widely accepted objective scoring. The scoring
presented in this paper is computed from utterances as short as
two phones, and we approach this more as a mispronunciation
detection task, where different types of phonological alterations
from canonical form affect the score of the utterance.

CAPT learning applications that give immediate feedback
on single utterances have been built for L2 learners. [20] used
ASR output as feedback on correct pronunciation for adults.
[21] built a practise system for children with pronunciation dif-
ficulties in their native languages, where children get a cor-
rect/incorrect feedback from an ASR system. For children
learning foreign languages, CAPT systems have been embed-
ded into games. In [22] English pronunciation of short utter-
ances is scored based on tone, speed, volume and timbre [23].

Speech technology is generally more difficult to build for
children. Children’s data are harder to acquire, and the variance
of children’s speaking styles is large. Several papers describe
different methods and platforms to improve speech assessment
in children. [24] proposes a child speech disorder detection sys-
tem that uses a Siamese recurrent network trained with normal
speech to detect speech sound disorder. The system measures
the similarity and discrepancy of pronunciations and incorpo-
rates speech attribute features to provide diagnostic feedback.
[25] presents a child speech verification platform designed to
identify keywords and phrases in children’s speech with high
accuracy, even in noisy environments. [26] developed an in-
teractive mobile application to develop primary students’ initial
skills in Sri Lanka. For child ASR, tuning models trained with
adult data with a small amount of child audio has proven suc-
cessful [27]. Models that are pretrained in a self-supervised
manner have been finetuned with small amounts of child data
for L2 learning and for children with speech sound disorder
(SSD) [28, 29]. [30] found that automatic pronunciation feed-
back in a game improved pronounciation and engagement in
speech therapy and outperformed offline mispronunciation de-
tection tests. Finally, [31] measured effectiveness of automatic
pronunciation feedback from children before and after training
with a simple ASR-based CAPT system, and found the CAPT
system was beneficial. The study was based on subjective eval-
uation of quality of pronunciation of complete words spoken
before and after the training period. In our study, we are look-
ing for more objective evidence of long-term representations of
previously unfamiliar speech sounds forming in the brain.

3. Data collection
Speech data were collected to train the pronunciation scoring
system used in the learning experiments. Children’s native-
language (L1) and L2 English speech were collected with a
simple recording program, a prototype of the SIAK game and
a dedicated data collection game. L1 English speech samples
were collected from 24 UK English native speakers between 6
and 12 years of age through the data collection game. The na-

tive English child participants were recruited from Surrey and
Hampshire areas of England and had a Southern British accent.
Language learners’ utterances were collected from 148 children
between 5 and 12 years of age living in Helsinki metropoli-
tan area. Of these 130 had Finnish as native language, the
rest were bilingual with Finnish and another language as their
first language. 17969 utterances were collected. They were
validated and scored on a subjective 0-100 point scale by a
single annotator using a web interface. The annotator was a
native Finnish speaker, who had experience in teaching En-
glish to Finnish primary school children. As the annotator
was not a native speaker, the scoring is not intended to repre-
sent objective quality of English pronunciation. It reflects the
opinion of a single individual for clarity of pronunciation that
Finnish children are expected to develop after several months
or years of English lessons in primary school. The downside
of using a single annotator is that there is no simple way of
finding annotation errors, and there are some inconsistencies
in the annotations. Of the data, 1489 items were labelled as
rejected (silence, interrupted, wrong word, spoken noise, lack
of effort). Of the rest, 10 % were randomly selected as devel-
opment set and 10 % as test set, the rest made up the scoring
system training set. Each speaker only appeared in one of the
sets. For training the scoring systems, the 0-100 discrete scale
was mapped to a discrete 0-5 score. The anonymized annotated
dataset can be downloaded for research purposes at https:
//huggingface.co/datasets/rkarhila/SIAK.

4. Game clients
We created three CAPT games. The first SIAK game, shown
in Figure 1a, was an exploratory board game aimed at 9-12 year
olds. The second game Pop2Talk shown in Figure 1b, had a
simpler game mechanic aimed at younger children of 6-8, and
had a better control over repetitions of stimuli and player tasks.
Both research games were developed with Unity and compiled
for Android and Windows platforms, consisting of levels with a
number of challenges. In challenges, players hear an L1 trans-
lation and L2 example pronunciation of a word or phrase, and
try to reproduce the L2 utterance as accurately as possible. The
players then immediately receives a score in the form of 0-5
stars, reflecting the goodness of their pronunciation attempt. At
the end of each level there is a special challenge, where the
player will only hear the L1 translation, and needs to produce
the L2 word without a model pronunciation.

The third game, a browser-based physics game Fysiak ,
shown in Figure 1c, was a small physics puzzle game that
ran entirely on JavaScript in a modern desktop web browser,
and was used to create a game-like athmosphere for data
collection. All game clients are open source and available
for research use at https://github.com/rkarhila/
siak-game-clients.

5. Scoring models
We developed three scoring models used in different versions of
the learning game. The accuracy of all scoring models as cor-
relation to human reference scoring is summarised in Table 1.
Training data for the systems consisted of read speech corpora
with clear pronunciations. For English we used WSJCAM0 and
PF-Starcorpora and for Finnish both adult and child parts of the
Finnish SPEECON corpus. English word to phone mappings
were from CMU dictionary and UK English CombiLex dic-
tionary. Finnish mapping was rule-based. Each model uses a
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(a) SIAK (b) Pop2talk (c) Fysiak

Figure 1: Game clients

Table 1: Correlation betweeen prediction and human scoring
for the collected test set.

Model Correlation
HMM-GMM + phone classifier + SVM 0.59
CTC + articulatory features + SVM 0.59
CTC + PWLD + SVM 0.61
CTC + PWLD Linear regression 0.54

simple energy-based voice activity detection based on Pocket
Sphinx [32] to first validate presence of speech.

5.1. Baseline scoring system

The baseline in our experiments in validation and scoring ut-
terances is the first generation of the SIAK game powered
by an HMM-GMM forced alignment segmenter and a bilingual
phonetic segment classifier recurrent neural network (RNN),
used in demonstrations [1] and data collection. The hidden
Markov model with Gaussian mixture model (HMM-GMM)
segmenter was trained with native English data augmented with
background noises. The segmenter produced alignments and
likelihoods when it found a phone alignment of the target word
via Viterbi search. Validating utterances by tuning the search
beam or filtering by output likelihood did not work reliably, so
all utterances were passed to the next component.

Each segment was separately fed to a phone classifier, a
bidirectional long short term memory (LSTM) network four
layers deep, with a width of 1000, 750, 500 and 250 units,
trained on 36 dimensional Mel-spectral bins extracted from
noise-augmented English and Finnish data. A support vector
machine (SVM) regressor computed the pronunciation score
based on the difference between reference and hypothesis
phoneme sequence. The SVM training was augmented by
adding artificial negative samples created by giving wrong
prompts to training utterances. We reached a correlation of 0.59
between reference and model scoring on the scoring test set.

The pipeline consisted of Kaldi, Tensorflow and Scipy, and
without proper integration, the delay between speaking and re-
ceiving score interrupted gameplay.

5.2. CTC + SVM system

In the second generation system, the segmenter and phone
classifier are replaced by a connectionist temporal classica-

tion (CTC) phoneme/speech event recogniser multi-task trained
to do framewise articulatory feature prediction. The network
was small at 300 units wide and three layers deep to ensure
light computational load. The incoming audio was decoded
with two CTC outputs: A phone-based model and a speech
event/landmark-based system. The speech event outputs were
four broad phonetic classes adapted from [33], namely 1) vowel,
2) stop consonant, 3) fricative and 4) semi-vowels and nasals.
The input was validated by passing under a preset error rate
threshold with either the phone or the event output.

Scoring was based on outputs of the phonological feature
predictor. The phonological features for UK English were
adapted from [34], and appended with several features describ-
ing vowel and diphthong pronunciation more accurately. The
phonological features were extracted for each phone based on
boundaries found by Manhattan distance dynamic time warping
(DTW) to the ideal phonological feature vectors of the target ut-
terance. An SVM is used for mapping the feature difference to a
score, and the same 0.59 correlation is reached but with a much
faster, simpler pipeline that generally returned a score in 0.2 s
to the player. This second generation system fast enough to use
for the learning experiment.

5.3. CTC + PWLD system

In the third generation scoring model the articulatory feature
DTW is replaced by phonetically weighted Levenshtein dis-
tance (PWLD) described in [35] . The more simplified pipeline
allowed for a slightly larger, 3 layer 600 wide GRU for phonetic
CTC, and the scoring mechanism attained a correlation of 0.61
with an SVM and 0.54 with a linear regression method. The
linear regression method was developed to produce more sta-
ble and more interpretable outputs for the scoring. In internal
playtests it was indeed found to perform more robustly than the
SVM scorer and was chosen as the method to use for the next
experiments.

6. Learning experiments and results
The scoring and the gaming approach to learning were validated
in learning experiments with children [2, 36] . In addition, we
studied children’s user experience and affective ratings for the
game app [3] . In [2] the participants were 37 native Finnish
speaking children with no developmental, language, or learning
disorders, whereas in [36] , the participants were 24 children
with dyslexia and 24 control children with typical reading skills.
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In both studies, the children were 7-11 years old, and they at-
tended the Finnish comprehensive school. None of the children
could understand or speak English fluently.

The participants practiced English words with the SIAK
research game described in Section 2.2 with the second-
generation scoring model. The game version had 24 levels with
game features. In addition, three non-game like levels were em-
bedded among the game levels, resulting in 27 levels in total.
The three non-game levels included an identical speech listen-
ing and production task as the game levels, but they had no
game elements, such as stars or other kind of feedback, or visual
game features (these levels had just a black arrow on a white
background to move forward). All children played all 24 game
levels and three non-game levels. The game was played on ei-
ther Windows laptops or Android tablets using a headset mi-
crophone. Gameplay was supervised by researchers and gam-
ing equipment was provided by the project. The gaming period
lasted on average 4.3 weeks. The children played the SIAK
game on average 15.5 min a day 2.9 days a week.

To quantify the effects of game-based language learning
with pronunciation feedback in children as objectively as possi-
ble, we used electroencephalography (EEG) to measure chil-
dren’s brain responses (the mismatch negativity aka MMN;
see [2] for details) that reflect the establishment of represen-
tations for new speech sounds in the brain. Such neural repre-
sentations are prerequisites for both speech perception and pro-
duction, yet perceptual learning is likely to precede progress in
production. A benefit of our approach is that the brain responses
we measured are elicited in the brain automatically regardless
of children’s effort or their attention allocation, which makes
our method particularly suitable for children and more objec-
tive than the analysis of children’s behavioral performance. We
compared the activation of brain representations for L2 English
speech sounds /T/ and /ð/. To counterbalance the speech sounds,
a half of the children learned words with /T/ in the game and
/ð/ in the non-game, and vice versa. The amount of exposure
was kept equal for these sounds in each participant (for de-
tails in setup and equipment, see [2]). The statistical results
of linear mixed model analysis showed that in typically devel-
oping children the brain responses had significantly increased
after training the speech sounds with the game, but there was
no statistically significant change after training with the non-
game in the same children (see [2] for figures, amplitude values
and statistics). An opposite pattern was found in children with
dyslexia [36]. The statistical results of linear mixed model anal-
ysis showed that the brain responses had significantly increased
after training the speech sounds with the game (from -0.32 to
-0.99 µV), but there was no statistically significant change after
training with the non-game in the same children (from -0.25 to
-0.30 µV, see [35] for figures and statistics).

Regarding user experience, children expressed higher af-
fective ratings for the game compared to non-game version of
the application [3]. By combining the data in [2] and [3] for the
current work and by analyzing their relationship with Pearson’s
r, we found that children’s ratings for game engagement (lik-
ing the game and finding it easy) correlated positively with the
degree of brain response change in [2] (r=0.38, p=0.021).

7. Discussion
To summarize the project outcome, we have shown the bene-
fits of using speech technology in controlled, regular but short
amounts of gamified learning for improving phonological rep-
resentations in the brain.

The hypothesis of the SIAK project was that automatic
pronunciation evaluation embedded in a game would improve
learning results. To make sure that children did not just learn to
use the scoring engine better, the learning effects were measured
with EEG.The experimental setup and analysis were compli-
cated, and the results for experiments that started in 2017 were
finally published in 2022 and 2023, giving the evidence that the
scoring system and the exploratory style game were both good
enough to yield measureable learning benefits.

We did verify that children learn better with a game and au-
tomatic feedback than by using the time on control condition,
namely, non-game with no feedback. What remains, however,
is to factor this into the learning benefits brought by the game
and benefits brought by automatic evaluation. Our results also
suggest that user experience affects game-based learning: brain
responses changed more as a result of gaming in those children
with better engagement. This link to measurable changes in
the brain highlights the importance of user experience in game-
based learning. This is likely due to stronger activation of the
reward system of the brain in those children who were more
engaged in the game. We were expecting dyslexic children to
benefit from text-free foreign language learning, but the results
were opposite. Possible accounts for this are distraction by vi-
sual game features or atypical processing of rewards in the brain
in dyslexia. For dyslexic children, possible follow up study
would be to investigate the role of the feedback mechanism in a
visually simpler game, or without a game at all.

We found that the SVM based scoring of the second gener-
ation system that was used in the learning experiment could not
generalise at all. It worked reasonably well for the utterances
in the game, but failed for most tests done with out-of-domain
utterances. That is why the third generation system switched to
a more constrained linear regressor scorer. This scoring did not
reflect as well the annotator’s preferences, but was more pre-
dictable and gave a direct breakdown of the score for any pro-
nunciation errors. At this time we had developed a new game
for conducting learning experiments. The second learning re-
search game Pop2Talk game allowed better control of repeat-
ing stimuli and the game was easier to play, allowing us to target
6-8 year old children. However the planned experiments were
cut short by COVID-19 lockdowns.

We are releasing the source code for our games and the
training data used in our pronunciation evaluation systems, and
are working on new scoring models to be released in the future.

8. Conclusions
We have described pronunciation feedback scoring methods to
use in L2 pronunciation learning games for 6-12 year old chil-
dren. We found the models to perform well enough to conduct
a learning experiment with children learning to pronounce and
distinguish speech sounds previously unfamiliar to them. The
experiment showed that learning games with automatic scoring
bring measurable benefits to learning.
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