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Department of Information and Communications Engineering, Aalto University, Finland
{firstname.lastname}@aalto.fi

Abstract
Computer-assisted learning tools (CAPT) are increasingly

reliant on AI tools. Recent studies demonstrated how neu-
ral systems pre-trained in a self-supervised fashion, such as
wav2vec2, can overcome the data scarcity problem of most
CAPT systems, especially if the target users are young children.
In most current works, however, the focus lies on fine-tuning
these models on a single task, which often leads to catastrophic
forgetting and severely limits the capabilities of the fine-tuned
model. In this work, we propose the usage of multi-task learn-
ing and demonstrate how a single wav2vec2 model can simulta-
neously generate transcript and assess pronunciation of Swedish
children with speech sound disorder and child second language
learners of Finnish. We also investigate which layer is the most
informative for the rating task. Our multi-task solutions provide
higher pronunciation classification performance and competi-
tive ASR accuracy in comparison to the corresponding single-
task systems.
Index Terms: ASR, speech assessment, wav2vec2, multi-task,
children speech

1. Introduction
Computer-Assisted Pronunciation Training (CAPT) has gar-
nered attention for its potential to enhance self-regulated pro-
nunciation abilities. CAPT systems typically use a method
for evaluating pronunciation called Goodness of Pronunciation
(GOP) [1, 2]. The GOP approach measures the probability that
the expected phone is observed with respect to all the other ob-
servable phones, and it typically involves an automatic speech
recognition (ASR) system, a forced-aligner, and a scoring mod-
ule [3]. The ASR system provides acoustic scores, which are
used by the forced aligner to determine the phonemes uttered at
a given time and calculate the acoustic scores per phoneme. The
scoring module then employs the phonetic scores to estimate the
GOP for a given speech sample. Recent studies focused on de-
veloping GOP models for children have shown that using ASR
log posterior probabilities to train classifiers is a more effective
approach compared to the conventional GOP pipeline [4].

Developing automatic pronunciation training systems is a
challenging task due to the limited amount of training data,
especially for special target groups such as child second lan-
guage learners (L2) or children with speech sound disorder
(SSD). However, successful attempts to apply self-supervised
deep acoustic models like wav2vec2 [5] to low-resource do-
mains make it possible to develop systems for ASR and various
audio classification tasks [6, 7, 8]. The wav2vec2 models can
also be fine-tuned directly for speech pronunciation classifica-
tion. However, the wav2vec2 classifier alone is not aware of
the target word the speaker is asked to pronounce. Therefore,

a separate ASR system is needed to verify whether the speaker
attempted to utter the target word. Unfortunately, combining
these two large models results in a computationally intensive
system, unsuitable for gamified learning environments such as
mobile applications.

Since children speak differently compared to adults [9], an
ASR model developed using adult speech can be expected to
produce suboptimal transcripts. Earlier works demonstrated
that continued pre-training is an efficient tool for domain adap-
tation [10, 11]. Unfortunately, in our case, this is not a feasible
solution due to the lack of in-domain data. Instead, we opted for
a continued fine-tuning strategy by first training the pre-trained
models for general adult ASR and then adapting them to child
speech via our limited target data.

The previously listed constraints motivated us to explore
new approaches for fine-tuning CAPT and ASR models using
our low-resource corpora. Our main goal is to create a unified
end-to-end solution that can act both as an ASR and a CAPT
model for children. To achieve this, we employ multi-task
learning and show that a single wav2vec2 model can fulfill both
tasks simultaneously and, unlike a wav2vec2 fine-tuned purely
for the speech rating task, avoid catastrophic forgetting [12].

In addition, we investigate whether the common practice of
using the last Transformer layer as input in multi-task learning
of wav2vec2 [13, 14, 15, 16, 17] is the best solution. Previous
studies suggest that static wav2vec2 representations from some
intermediate layers embed more phonetic information valuable
for estimating the quality of pronunciation [18, 19], predicting
emotions [20] and L2 speakers’ proficiency levels [21]. Lay-
ers 14-19 provided the best features for phoneme classification
in [22]. Apart from these studies, we investigate the perfor-
mance of hidden representations after jointly optimizing the en-
tire network both for ASR and speech rating tasks, inspired by
the fact that a layer’s performance cannot be determined solely
based on its pre-fine-tuning performance. In other words, we do
not freeze the weights of the wav2vec2 during training for these
downstream tasks.

Recent studies have proposed various multi-task learning
frameworks for speech processing tasks. For instance, [23]
proposed a framework that implements voice activity detection
(VAD), speaker clustering (SC), and ASR using wav2vec2 lay-
ers in a hierarchical manner. By using different wav2vec2 lay-
ers for VAD, SC, and ASR from earlier to later layers, they
achieved improved performance and reduced diarisation error
rates. Another promising framework was proposed by [13],
who demonstrated the effectiveness of wav2vec2 as a unified
multi-task system for speaker verification and language identi-
fication. Their results indicated that a single wav2vec2 model
can achieve competitive performance on both tasks without any
task-specific modifications. Similarly, [14] proposed a single
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Dataset # of Samples
1 2 3 4 5 Total

SweSSD 425 662 1148 978 2814 6027
FinL2 68 247 64 579 1166 2124
Table 1: Distribution of ratings in SweSSD and FinL2.

multi-task learning framework for end-to-end ASR and accent
recognition (AR) simultaneously. They found that sharing only
a few encoder layers and a smaller weighting factor with the
AR task yields better results. By jointly optimizing network
parameters on multiple tasks using a shared backbone, these
frameworks offer potential advantages such as reduced compu-
tational cost and improved performance.

To summarize, this work presents the following contribu-
tions. Firstly, we propose multi-task wav2vec2 solutions with
a customized architecture for ASR and pronunciation classi-
fication of Swedish children with SSD and children practic-
ing L2 Finnish. We develop multi-task systems that outper-
form the corresponding single-task ones on the speech rating
task and maintain competitive ASR capability, as well as re-
duce computational costs. Secondly, we analyze the classi-
fication performance of our multi-task systems across differ-
ent architectural choices and showcase a general performance
curve that provides insight into which range of layers to nar-
row the search in similar studies. Lastly, we release our best
performing multi-task wav2vec2 models along with the train-
ing scripts at https://github.com/aalto-speech/
multitask-wav2vec2.

2. Data
This study incorporates experiments on two children’s speech
datasets. The first one, namely SweSSD [24], is a pathologi-
cal speech corpus consisting of 6027 samples (about 2 hours)
recorded from 28 native Swedish speakers aged 6 to 10 years,
out of which 16 were diagnosed with an SSD and the rest 12 had
typical speech. Our second dataset, named FinL2, is composed
of 2124 samples (nearly 1.5 hours) uttered by 24 Ukrainian chil-
dren of age 7-11 years practicing L2 Finnish. The SweSSD cor-
pus is anonymized, while the L2 Finnish data include speaker
IDs, which makes it possible to perform speaker separation
when splitting the data.

Both datasets consist of single-word utterances, but the
Swedish one has a much more diverse vocabulary. There are
1109 unique words in SweSSD, out of which 422 words oc-
cur only once. In contrast, FinL2 includes a set of 90 words
repeated by all the speakers. These speech datasets are not tran-
scribed, only the target word for each recording is known.

For each sample, the level of pronunciation is assessed by
a human annotator on a scale of 1 to 5. The distribution of
ratings in the corpora is reported in Table 1. Both corpora are
heavily imbalanced towards the highest level: around half of the
samples belong to class 5. The imbalance problem is relevant in
particular for the L2 Finnish corpus, in which 2 out of 5 classes
have only about 70 samples each.

3. Methods
3.1. wav2vec 2.0

wav2vec 2.0 [5] is a self-supervised learning framework de-
signed for the efficient representation of raw audio data in vector

space. The framework consists of three components, including
a feature encoder, a context network, and a quantization mod-
ule. The feature encoder uses a 1D convolutional neural net-
work to convert the raw audio data into feature vectors. The
context network is a stack of Transformer [25] encoder blocks
which uses relative positional embedding and processes the fea-
ture vectors. In this work, we use wav2vec2 Large models com-
posed of 317M parameters and 24 Transformer layers. Finally,
the quantization module converts the continuous vector output
to discrete representations via a Gumbel-Softmax function and
maintains multiple codebooks.

The pre-trained model can be fine-tuned for various down-
stream tasks. For the ASR task, a linear layer, also referred to
as the ASR head, is added on top of the network to classify
the context representations into character tokens. The model is
then fine-tuned on labeled data using a Connectionist Tempo-
ral Classification (CTC) loss [26]. After fine-tuning, it can be
used directly as an end-to-end system without the need for an
external language model.

3.2. Pronunciation Rating

For the purposes of automatic pronunciation rating, we used
several wav2vec2-based approaches. First, we built single-task
wav2vec2 models with a classification head on top of the net-
work and trained them with the cross-entropy (CE) objective
function. This head is composed of a linear projection layer
followed by average pooling and a classification layer. Second,
we implemented multi-task wav2vec2 solutions fine-tuned for
ASR and speech pronunciation classification tasks simultane-
ously by feeding the corresponding heads with certain Trans-
former blocks, see Figure 1. Since our models were originally
fine-tuned for adult ASR, we kept the ASR head connected to
the last Transformer layer and put the classification head after a
layer X in the range from 1 to 24. This way, the weights of the
Transformer layers after the layer X were optimized purely by
propagating the CTC loss, while the rest of the Transformer lay-
ers as well as the CNN network, were trained with a combined
gradient of the CTC and the CE loss.

In addition, the predictions of the fine-tuned wav2vec2 clas-
sification head can be further adjusted by an external deci-
sion tree (CER DT in Figure 1) trained on character error rates
(CERs) extracted from the wav2vec2 ASR component. The ra-
tionale for using CERs as features is that they can function as
a crude measure of pronunciation error. In this case, the output
class probabilities are merged between the DT and the classifi-
cation head. The DT can also be used as a separate system on
top of a single- or a multi-task wav2vec2 ASR head.

Encoder Layer 1

Encoder Layer 24

Encoder Layer X

CNN

head

DT
CERASR

head

Classification

Figure 1: Multi-task wav2vec2 system overview.

Lastly, we fine-tuned separate wav2vec2 models for chil-
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dren ASR. First, these models were needed to create ensemble
systems of single-task classification systems, which cannot gen-
erate transcripts on their own, and CER decision trees. Second,
they served as base models for training single-task speech rating
systems by replacing the ASR head with a classification head.
This provides a more fair comparison to multi-task solutions
which utilized both the text transcripts and the rating labels dur-
ing training.

4. Experiments
Due to the difficulties in collecting a sufficient amount of chil-
dren’s speech, we had to test our systems using cross-validation
(CV) and split our data into 6 folds where only one fold was
used for testing at a time. The CV setup enabled us to evaluate
our models on the entire dataset at the cost of increased training
time (6 models instead of one). Furthermore, training 6 models
helped us investigate the stability of different approaches.

The second issue we had to face was data imbalance. As
can be seen from Table 1, the high-rated classes (4 and 5) are
extremely overrepresented in both corpora. Therefore, stan-
dard metrics like accuracy would not reflect the actual perfor-
mance of our systems faithfully. To properly compare different
rating models, we opted to use the Unweighted Average Re-
call (UAR), which averages the recalls of each category, thus
giving us an estimate of the per-class performance. Addition-
ally, we must note that not all errors are equal in our case,
and the difference between the predicted rating and the anno-
tated one should be considered too. To account for this, we
report the Mean Absolute Error (MAE), which provides an
estimate of the average difference between the automatically
generated labels and the human-annotated ones. Finally, we
assess system-human and human-human agreement using the
weighted quadratic kappa and Spearman’s correlation (κ and ρ
in Table 2). For SweSSD, about 20% of the corpus was ran-
domly sampled and re-evaluated by the original human rater 6
months after the original annotation. For FinL2, 10% of the
data was rated by 3 raters, and the one with the highest agree-
ment with the original ratings was chosen.

Since the children’s speech datasets are rated, but not tran-
scribed, we trained and evaluated our ASR models only by
speech samples rated as 4 or 5 (containing only minor mispro-
nunciations) with target words as reference transcripts. During
multi-task training, all recordings are fed into the wav2vec2 net-
work, but the CTC loss is not calculated for samples belonging
to a level lower than 4, and they are masked during the word
and the character error rate (WER and CER) calculation.

As our base models for the experiments, we used publicly
available wav2vec2 Large models. The Swedish model was
originally pre-trained on audiobooks and other speech from col-
lections of the National Library of Sweden [27] and fine-tuned
on NST [28] and CommonVoice [29], while the Finnish model
was pre-trained on the Uralic (Finnish, Estonian and Hungar-
ian) subset of the European parliamentary speech collection
called VoxPopuli [30] and fine-tuned on 100 hours of colloquial
Finnish from the Lahjoita Puhetta (Donate Speech) corpus [31].

4.1. Selecting the Optimal Hidden Layer for Speech Rating

As discussed in Section 1, the performance of static acoustic
embeddings of wav2vec2 on various target tasks varies across
hidden layers, and the ones from the top layer are not always
the best. However, the best-performing hidden representations
extracted from a certain Transformer layer do not guarantee this

layer is the most optimal after the wav2vec2 model is jointly op-
timized for ASR and speech classification. Therefore, our pre-
liminary experiments were aimed to determine how the choice
of the Transformer layer to precede the classification head af-
fects the classification performance after multi-task fine-tuning.

For each language, we kept the CTC head after the last
wav2vec2 layer and connected the classification head with a
projection layer (256 output units) on top of one Transformer
block at a time, then fine-tuned the system with a learning rate
of 7e-5 for 20 epochs and measured the development recall.
Both losses (CTC and CE) had the same weight of 1, based on
our preliminary experiments. We repeated training by keeping
each of the 6 folds in turn as a development set and excluded the
corresponding test folds from training and evaluation to avoid
unintentional optimization toward the test data.

The results of this experiment are shown in Figure 2. Apart
from SweSSD, the development recalls on FinL2 vary consid-
erably between folds, which confirms the necessity of having
a cross-validation setup in the later experiments. Otherwise,
our preliminary experiments revealed that both Swedish and
Finnish models consistently provide low classification perfor-
mance when the classification head is connected to any layer
in the first half of the wav2vec2 network. Another interesting
observation is that when the classification head is connected to
the last hidden layer, the classification performance (UAR) of-
ten degrades. The performance drop is particularly noticeable
in L2 Finnish results: the development recall is always lower
when the classification head is connected to the last layer than
the second last one, and for 4 out of 6 folds this setup is the
worst. Based on these results, we chose the best-performing
layers in terms of development recalls (#19 for SweSSD and
#17 for FinL2) in addition to the last layer for training and ana-
lyzing the final systems.

4.2. Multi-task Experiments

In our main experiments (Table 2), we trained multi-task sys-
tems (MT W2V2) and compared them to single-task wav2vec2
models trained solely for ASR (W2V2 ASR) or speech rating
(W2V2 RATING). We used the same training hyperparameters
as reported in Section 4.1. In addition, we built simple decision
tree (DT) classifiers by following a 6-fold CV using the CERs of
each wav2vec2 system as input and aggregated the label prob-
abilities to analyze if wav2vec2 and DT can complement each
other in an ensemble ([system]+CER DT). It should be noted
that each ensemble system has a different DT trained on CERs
from the corresponding ASR model, however, we report sepa-
rate DT results only for the best-performing one.

The single-task ASR systems achieved 17.01%/6.34% and
4.47%/1.36% (WER/CER) for SweSSD and FinL2, respec-
tively. It should be noted that such low error rates for L2 Finnish
can be a consequence of over-learning the same set of 90 words
uttered by all 24 speakers even though the ASR does not rely on
any lexicon or language model. In contrast, multi-task training
of wav2vec2 always provided slightly worse ASR performance
compared to that of the single-task models. Furthermore, CER
and WER increased when the classification head was not con-
nected to the last hidden layer of the multi-task wav2vec2.

Our single-task wav2vec2 classifiers outperformed the
multi-task solutions in terms of UAR if both the ASR and the
classification head of the multi-task system were put after the
last Transformer layer. However, the situation changed when
the Transformer layer for pronunciation rating was chosen prop-
erly. For SweSSD, choosing the most appropriate encoder block
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Figure 2: Development recalls across cross-validation folds af-
ter fine-tuning in a multi-task setup with a classification head
connected to a certain wav2vec2 Transformer layer.

to precede the classification head from the preliminary experi-
ments (layer 19) resulted in 0.74% absolute UAR improvement
over the single-task wav2vec2. For Finnish the corresponding
improvements are even bigger: The UAR of MT W2V2 (L17)
is 14.75% higher than the single-task classification system.

The DTs trained on the CERs extracted from the wav2vec2
models have the lowest UAR and the highest MAE, which in-
dicates that the CER alone does not contain all the needed in-
formation for pronunciation rating. However, adding them to
an ensemble with the wav2vec2 systems proved to be benefi-
cial. Combining the class probabilities of the best multi-task
system and the corresponding decision tree provided an addi-
tional UAR improvement of 1.45% and 0.9% for Swedish and
Finnish, respectively. Moreover, these DTs can act as a verifi-
cation system and complement the neural classification compo-
nent, which is not aware of the target word. For example, they
would provide a penalty term for uttering a word other than the
target word even if the child’s speech is otherwise intelligible
and pronunciation is good.

The results of the human agreement indicate that the pro-
nunciation rating of short speech samples is difficult even for
human experts. While the human result outperformed our best
system on SweSSD, the annotator still did not completely agree
with herself when re-annotating the data. The human raters’

System WER, CER, UAR, MAE ρ κ% % %

SweSSD
CER DT N/A N/A 43.39 .69 .681 .334

W2V2 ASR 17.01 6.34 N/A N/A N/A N/A

W2V2 RATING N/A N/A 48.26 .54 .734 .435
ë + CER DT 49.28 .53 .737 .440

MT W2V2 17.17 6.42 47.64 .53 .752 .430
ë + CER DT 49.48 .52 .763 .439

MT W2V2 (L19) 18.62 7.05 49.00 .56 .718 .437
ë + CER DT 50.45 .55 .734 .445

Human (20% data) N/A N/A 65.75 .39 .877 .572
FinL2
CER DT N/A N/A 39.05 .57 .573 .256

W2V2 ASR 4.47 1.36 N/A N/A N/A N/A

W2V2 RATING N/A N/A 46.06 .39 .720 .532
ë + CER DT 49.57 .38 .722 .538

MT W2V2 6.30 2.13 43.07 .37 .729 .526
ë + CER DT 45.29 .37 .730 .529

MT W2V2 (L17) 6.76 2.22 60.81 .36 .720 .565
ë + CER DT 61.71 .36 .723 .571

Human (10% data) N/A N/A 44.40 .50 .757 .406
Table 2: Results of speech rating experiments. The multi-task
systems (MT W2V2) can do both ASR and speech rating. The
Transformer layer number preceding the classification head is
added in the parenthesis if other than the last layer (L24).

disagreement is even higher in FinL2, where they outperformed
our best model only in terms of Spearman’s correlation (ρ).
Note that the human performance level is estimated only on
10% of the data.

5. Conclusions
In this work, we developed automatic pronunciation training
systems for Swedish children with SSD and L2 children learn-
ing Finnish. We demonstrated that computationally efficient
multi-task solutions can provide higher pronunciation rating
performance and competitive ASR accuracy compared to sepa-
rately optimized wav2vec2 systems for ASR and rating. More-
over, we conducted a thorough analysis of the multi-task model
classification performance for 2 different wav2vec2 models and
2 target datasets. We showed that for pronunciation rating by the
multi-task wav2vec2, the last hidden layer commonly chosen in
previous works for audio classification tasks is not the best one.
Although the choice of the best layer seems to be model- and
dataset-specific, we showcased the general shape of the perfor-
mance curve that offers insight into which layers others should
try. To train a similar model for the speech rating task on a new
dataset, the range of search can be limited to a certain region of
layers. Next, we will integrate the multi-task system into our
mobile CAPT game application for children to see the practical
effect in feedback speed and performance.
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