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Abstract
In this paper we propose a spoofing countermeasure based

on Constant Q-transform (CQT) features with a ResNet embed-
dings extractor and a Gaussian Mixture Model (GMM) clas-
sifier. We present a detailed analysis of this approach using
the Logical Access portion of the ASVspoof2019 evaluation
database, and demonstrate that it provides complementary in-
formation to the baseline evaluation systems. We additionally
evaluate the CQT-ResNet approach in the presence of various
types of real noise, and show that it is more robust than the
baseline systems. Finally, we explore some explainable audio
approaches to offer the human listener insight into the types of
information exploited by the network in discriminating spoofed
speech from real speech.

1. Introduction
As artificially generated (or manipulated) speech becomes more
naturalistic to the human listener, it is important to consider
the impact of ‘spoofed’ speech on automatic speaker verifica-
tion (ASV) systems. In response to this need, the development
of spoofing countermeasures to detect spoofed speech has be-
come an active area of research. The ASVspoof initiative1 [1]
was established to encourage research into spoofing counter-
measures via a series of evaluations focused on different classes
of spoofed speech. In this paper, we focus on the development
and analysis of a spoofing countermeasure using the Logical
Access portion of the ASVspoof2019 evaluation dataset [1],
which consists of a diverse collection of text-to-speech (TTS)
and voice conversion (VC) spoofed speech samples.

The recent wave of Deep Neural Network (DNN) based ap-
proaches to speech synthesis have contributed to a rise in nat-
uralness of spoofed speech; it is logical therefore that detect-
ing spoofed speech is increasingly done with such architectures,
e.g. [2, 3]. We consider the use of a Dilated ResNet for spoofing
detection. A Dilated ResNet [4] is a DNN with dilated convolu-
tional layers, enabling larger time-dependencies to be captured
while keeping model complexity constant.

Gaussian Mixture Models (GMMs) have featured promi-
nently in voice conversion approaches, and also as classifiers
for spoofing detection [5]. Here we propose a spoofing coun-
termeasure that uses a GMM to classify an embedding layer
of a Dilated ResNet. We also evaluate the performance of the
ASVspoof2019 baseline GMM systems for comparison.

1www.asvspoof.org

Constant Q-transform (CQT) [6] and constant Q-transform
based cepstral coefficients (CQCCs) have become popular fea-
ture extraction approaches for spoofing detection, having been
shown to outperform conventional log spectrogram or log Mel
spectrogram based features [7]. The CQT is closely related
to the Fast Fourier Transform (FFT), but with logarithmically
rather than linearly spaced frequency bins. This results in higher
temporal resolution, but lower frequency resolution in high fre-
quency bins. A reason for the effectiveness of the CQT may
be that speech synthesisers are precisely optimised for psy-
choacoustic quality with the Mel based representations, how-
ever they can still contain perceptible artifacts from a machine’s
point of view. The constant Q-transform was originally devel-
oped for music processing, which indicates that not only psy-
choacoustic qualities, but also musical quality of speech, i.e.
harmonies might have a role in the design of successful spoof-
ing countermeasures. In this paper, we consider the use of CQT
features within a dilated ResNet architecture to bring in com-
plementary information for noise robustness. We will explore
how robust these techniques are and show their trade-offs.

The motivation behind developing a spoofing countermea-
sure (CM) in a speaker recognition pipeline is to distinguish
genuine (bonafide) speech from spoofed speech. Thus, a suc-
cessful CM should learn the characteristics of realistic speech
(i.e. naturalness). Many systems in the ASVspoof2019 chal-
lenge performed poorly with voice conversion (VC) attacks [8].
This is likely to be because these utterances have substantial
difference in their naturalness compared to their text-to-speech
(TTS) and hybrid (VC-TTS) counterparts. One way to verify
this would be to ask human listeners to rate these utterances
for their naturalness, and then find correlations between a CM’s
decision and the utterance ratings. This would require a sub-
stantial time investment. However, quite recently MOSNet [9]
has been introduced to provide an objective way to evaluate ut-
terances on a large-scale, which allows us to automatically rate
naturalness of ASVspoof2019 utterances and perform such ex-
periments. This enables us to explore the extent to which a CM
models the naturalness of speech.

There have been several empirical studies on the noise ro-
bustness of spoofing countermeasures [10, 11, 12] using earlier
ASVspoof evaluation datasets. All of these works agree that
noisy environments affect the spoofing detection performance
significantly. In this work, we test the robustness of the CQT-
ResNet architectures in the presence of real noise. For com-
parison, we assess the robustness of linear frequency cepstral
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coefficient (LFCC) and CQCC based GMM countermeasures
in parallel.

A common objection to DNN-based classifiers is an inabil-
ity to explain the classification decision. Explainable machine
learning techniques are readily available for computer vision
applications [13], but are currently lacking in audio process-
ing. In this paper, we demonstrate two explainable audio based
methods to give an idea about the acoustic cues that the spoofing
countermeasure neural network uses to discriminate spoofed
from bonafide speech.

2. Dataset
We base our analysis in this paper on the ASVspoof2019 logical
access dataset [1], which includes three main classes of attacks:
text-to-speech synthesis (TTS), voice conversion (VC), and hy-
brid TTS-VC speech, along with bonafide speech. Physical ac-
cess attacks such as replay and mimicry are not considered in
this paper.

An observation from the ASVspoof2019 evaluation results
[1] was that the spoofing detection performance across differ-
ent logical access attacks was more variable than in the case of
physical access replay attacks; we therefore consider it a more
challenging task for a single spoofing detection system. Fur-
thermore, we expect the greater variability in the logical access
audio to be more interesting from an explainable audio perspec-
tive.

We follow the ASVspoof2019 protocols for training and
testing our proposed systems (i.e. using the training and eval-
uation lists respectively). Additionally, we select a subset of
the development and evaluation data to create a noisy test set,
which is explained in Section 3.4.

3. Methods
3.1. Feature extraction

All audio files were preprocessed by applying a CQT with
250 samples between successive frames (hop length), with
240 bins in total and 48 bins per octave using librosa’s CQT-
implementation [14]. The LFCCs were calculated using li-
brosa, and the CQCCs were directly extracted from the pub-
lished baseline feature extractor in MATLAB.

3.2. Classifier architectures

We used two different types of neural network classifiers, which
have a Dilated ResNet architecture based on [15] as their under-
lying classifier. A Dilated ResNet [4] is a deep neural network
using dilated convolutional layers. Dilated convolutional layers
are expansions of traditional convolutional layers: i.e. with a di-
lation of (2,2), a 3x3 kernel is padded with zeroes, resulting in a
5x5 kernel, see Figure 1. This enables longer spatiotemporal re-
lationships to be learned with the same number of parameters.
We are therefore able to learn higher resolution feature maps
with reduced model complexity.

We believe it is advantageous for a CM to mimic the spoof
generators’ architecture. WaveNet, a state-of-the-art speech
waveform generator [17] is used as part of two different spoof-
ing attacks in this dataset. This architecture also uses dilated
convolutions, thus we think a Dilated ResNet is a suitable
choice as a CM neural network.

The first network we consider has a simple softmax layer at
the end, which we call CQT-DNN, see Figure 2. The second
network we consider uses the embeddings learnt by the neural

Figure 1: Illustration of dilated convolution reproduced from
[16]. Increasing the dilation rate does not change the size of
the kernel (green boxes). This means that the number of pa-
rameters learned does not change, while longer spatiotemporal
relationships can be modelled.

network to train two Gaussian mixture models (CQT-GMM-
DNN). This second approach is motivated by the ability to reject
classification decisions. As the last (softmax) layer of a neural
network outputs a normalised probability mass function for the
classes, we are unable to get a degree of confidence from the
neural networks. With GMMs, we obtain log likelihoods, which
can be thresholded to reject classification decisions. If desired,
this can be used to include a human in the loop of CMs, or to
reason about classification errors in general (i.e. by analysing
samples with low evidence) [18]. We note also that the ability
of embeddings to provide a compact and generalised descrip-
tion of the audio has been shown to be effective for other audio
classification tasks like speaker recognition [19].

We trained the network with the full training set using an
Adam optimiser [20] with a learning rate of α = 0.001. The
input was zero padded during training to a fixed 400 frame input
size. This kind of padding is justified with ResNet, because the
max pooling should do away with filter activations related to the
zero padding of the sequence. The size of the embedding layer
was 100. The neural network was implemented in Keras [21].

To provide a baseline for comparison, we reproduced the
LFCC-GMM and CQCC-GMM baseline systems from the
ASVspoof2019 evaluation in Python. We trained our base-
line systems with a 10% random subset of the training set.
We verified that our Python implemented baselines only differ
marginally from the published results in [7], i.e. our CQCC-
GMM EER is 9.52%, while the official CQCC-GMM baseline
EER is 9.57%. For the LFCC-GMM, our reimplementation’s
EER is 9.06%, the official LFCC-GMM baseline being 8.09%.

3.3. Performance measure

The performance for the neural networks are reported in terms
of the equal error rate (EER):

EER = Pfa(sEER) = Pmiss(sEER), (1)

where Pfa(·) refers to the probability of false acceptance,
Pmiss(·) indicates the probability of false rejection, and sEER is
the predicted score of the CM.

To analyse which classes contribute most to the equal er-
ror rate, we introduce the notion of classwise EERs. Calcula-
tion of classwise EERs is identical to normal EERs, except not
all spoofed examples are considered as targets, but only the se-
lected class.

In the ASVspoof2019 challenge, the t-DCF score was also
introduced as an evaluation metric. [22]. The t-DCF is a cost
function taking into account (1) the risk associated with mis-
classification within a Bayesian framework along with (2) the
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Figure 2: The Dilated ResNet architecture, consisting of four Dilated ResNet blocks. The green layers correspond to max pooling layers
(1/2 pooling). This means that the maximum of the activations are taken in a (2,2) window with a stride of 1 to halve (downsample)
the feature map. The blue layers correspond to dilated convolutional layers. The blocks have dilation rates: (2,2), (4,4), (4,4) and (8,8).
The two-way arrows above the layers represent the skip connections. In the last pooling layer only the vertical axis is pooled. The
numbers below the layers indicate the number of filters and the size of the convolutional layers. The kernel size is always (3x3). FCN
stands for fully connected layer. Note that aspect ratio is not conserved.

performance of an ASV system. The advantage of this metric
compared to CM EER is that it takes into account the vulnera-
bilities of an ASV system. For example, if an ASV is vulnerable
to attacks from a particular spoofing type, a CM should priori-
tise detecting those spoofing types against other, easier attacks.
However, there are other applications of CM systems, so for this
reason, we will only use spoof detection EERs in this paper.

3.4. Noise analysis

To assess the robustness of the systems to noise, we added sev-
eral types of realistic noise to the original ASVspoof2019 audio
files using MUSAN [23] and RIR 2 datasets. A subset of the de-
velopment and the evaluation sets was selected for this purpose;
from each set we extracted a balanced number of bonafide and
spoof samples, and sampled evenly across the spoofing types.
Samples in the subset were additionally balanced across speak-
ers, with all 10 development speakers and a random set of 10
evaluation speakers represented evenly. The resulting subset
contained 380 files (190 bonafide, 190 spoof). Note that no
noised data was incorporated into system training. The follow-
ing types of noise were added to the subset:

• Reverberation: the original files were convolved with
random selections of the simulated room impulses from
the RIR database

• Speech: audio samples from 3 to 6 speakers were ran-
domly selected from the MUSAN data set and mixed
into the original file at a signal to noise ratio (SNR) of
5 dB.

• Music: a music file was randomly selected from the MU-
SAN data set and then mixed into the original file at an
SNR of 5dB.

• Noise: a noise file was randomly selected from the MU-
SAN data set and then mixed into the original file at an
SNR of 5dB.

• Pink: a randomly generated pink noise sample was
added to each original sample at an SNR of 10 dB.

2http://openslr.org/28

3.5. Explainable audio

Several approaches to explain classification decisions with au-
dio examples were considered in a pilot study; we found the
following two the most promising:

GradCAM-Binary map: The first approach is based on
asking what part of the spectrogram the neural network focuses
on to make its classification decision for a given audio sam-
ple. We use the GradCAM technique [13] to obtain a saliency
map for the audio sample, using a publicly available GradCAM
library [24]. The saliency map shows which parts of the spec-
trogram are the most sensitive to the class activation decision.
In other words, this shows which parts are the most important.
This saliency map can be used to threshold the spectrogram for
its salient parts, as it is just a ”2D array of importance”. Finally,
the new spectrogram can be resynthesised to generate audio us-
ing a Griffin-Lim vocoder [25]. This process is visualised in
Figure 3.

Mean audio: Another way to emphasise the different
acoustic cues the neural network fits on is to generate a ‘mean’
audio sample. A limiting factor when listening to individual
audio samples (to assess naturalness, for example), is that our
brains inevitably focus on the semantic content instead of any
acoustic anomalies. By playing back multiple audio samples si-
multaneously, we can simulate a cocktail party scenario, where
the listener is forced to listen to the acoustics. In our setup,
we created mean audio samples by grouping individual samples
based on the CM scores. For each spoof type, we collect the
100 closest files to each side of the CM decision boundary (i.e.
bonafide and spoof) and generate a mean audio sample.

3.6. Dimensionality reduction on the the embedding space

In order to get a different perspective on the problematic classes,
and the shapes of the transformed probability distributions by
the neural network, we visualise the embedding space. This is
done with two different methods. First, by performing a princi-
pal components analysis (PCA) on the activations of the penulti-
mate layer (the embeddings) and plotting the first two principal
components. Then, we use the first 50 principal components to
calculate the t-Stochastic Neighbour Embedding (t-SNE) [26].
We then visualise the first two resulting embeddings.
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Figure 3: Example showing the process of audio reconstruction.
From left to right and top to bottom: (a) CQT-spectrogram (b)
GradCAM saliency map, (c) binary threshold on saliency map,
(d) map applied on CQT-spectrogram, which is passed to the
Griffin-Lim vocoder to get the reconstructed waveform.

3.7. Naturalness calculations

We used a publicly available implementation of MOSNet [9]
[27], to estimate the mean opinion scores (MOS) for the natural-
ness of the utterances. Mean opinion scores are typically deter-
mined by multiple raters in a subjective listening test; MOSNet
is an automatic system trained on subjective ratings of utter-
ances, which outputs the estimated MOS between 1 (low natu-
ralness) and 5 (high level of naturalness). After that, mean of
the utterance-level MOS values were calculated for each spoof-
ing category and a linear regression was performed between the
first principal component and the utterance-level MOS values.

4. Results and discussion
In Figure 4 we can see the classwise equal error rates of the
CQT and CQT-GMM-DNN architectures. Overall, the perfor-
mance of these models is better than the baseline LFCC-GMM
and CQCC-GMM systems. We note here again that our Python
implemented baselines only differ marginally from the pub-
lished results (see Section 3.2).

Although not the focus of this paper, we observe that fusion
of multiple systems has been demonstrated to be effective on
the logical access data [1]. To demonstrate the potential of fu-
sion here, we consider a simple sum fusion of the two baseline
systems (LFCC-GMM and CQCC-GMM) and the CQT-GMM-
DNN system, which results in a large performance improve-
ment.

From Figure 5 we can observe that most spoof examples are
perfectly separated from bonafide, but A17-A19 have substan-
tial overlap.

4.1. Audio examples

The generated audio examples can be found on the website3.

4.2. Voice conversion is challenging to detect

The classwise equal error rate results support that classes A17-
A19 are very challenging for the spoofing detectors. The
CQT-GMM-DNN system achieves slightly better overall per-
formance, by outperforming the CQT-DNN in difficult cases.

3https://karkirowle.github.io/publication/
odyssey-2020

4.3. Embeddings show separation and confirm difficulties

The neural network was able to generalise on a variety of ex-
amples not present in the training data, which is confirmed by
both the projections and the classwise equal error rates. The
projections of the embeddings tell us that the distribution of the
A17-A19 classes are likely very different from the other spoof
classes. The shape and size of this class distribution is very sim-
iliar to the bonafide class cluster. This indicates that the neural
network would benefit a lot from learning some discriminative
features between these classes and the bonafide classes.

The first two principal components explain 22.87% and
15.20% of the variance respectively. Observing that the over-
lap is larger than the reported classwise EERs on Figure 4, we
can conclude that discriminating A17-A19 classes require more
than two degrees of freedom.

The t-SNE projections tell a very similar story, the main
difference being that other classes’ point cloud includes four or
five clusters. On the other hand, a striking similarity is that the
bonafide and difficult classes are not perfectly overlapping.

4.4. Proposed countermeasures are more robust to realistic
noise

As seen in Table 1, the performance of all of the evaluated
spoofing countermeasures are affected negatively by noise. The
proposed CQT-GMM-DNN and CQT-DNN systems demon-
strate more robustness than the baseline systems however. In-
terestingly, the CQT-GMM-DNN is slightly less robust to noise
and it has a better EER in the evaluation set. In addition, we find
that the CQT-DNN’s performance hardly changes in reverbera-
tion. The 10% decrease on EER compared to the LFCC-GMM
in both developed architectures, also justifies the usage of CQT.
The embedding visualised in Figure 7 shows on the example
of reverberation how VC attacks and robustness are related. It
shows that performance on VC attacks is related to noise ro-
bustness, which is also supported by the evidence in Table 1.

The performance in noise is summarised by the DET (De-
tection Error Trade-off) curves in Figure 8, which shows the
improvement offered by CQT-GMM-DNN and CQT-DNN over
the baseline systems in both clean and noisy conditions.

4.5. Naturalness is a key decision factor for CM

Regression of MOS with the first principal axis results in an
R2 = 0.315, which indicates that naturalness of signals plays
significant role in the outcome. However, the influence is coun-
terintuitive as it is illustrated by Table 4. Surprisingly, the
framework deems bonafide signals less natural than several
spoof types, and we can see that the most challenging classes
are actually suffering from low naturalness. This is in agree-
ment with the results in [8], where in general, classes that were
more challenging to subjective listeners, were not necessarily
those which were more challenging for the neural networks.

4.6. Minor acoustic cues in explainable audio

The explainable audio gives a qualitative idea what kind of
acoustic cues the neural network fit on. The GradCAM-Binary
examples show buzziness and rhythm of speech to be the de-
termining factors, which are also the most apparent differences
between generated and natural speech.

The mean audio examples give a better idea of what acous-
tic cues are present in these signals. Especially in class A19,
there is a very audible noise. Spoof audio examples in general

329



Figure 4: EERs on the ASVspoof2019 evaluation set for the two proposed CQT networks, the two baseline systems, and a score fusion.
The class labels on the x-axis indicate the official spoof type category labels.

Model Reverb Speech Music Noise Pink All noise Noiseless
LFCC-GMM 21.05 38.94 35.79 38.42 23.68 41.37 5.78
CQCC-GMM 16.31 28.42 31.05 40.00 24.74 36.32 8.42

CQT-DNN 10.52 20.52 22.10 26.84 24.74 21.68 5.26
CQT-GMM-DNN 13.15 28.42 21.57 27.89 30.00 23.68 4.21

Sum Fusion 8.42 23.15 20.52 32.11 21.05 28.95 2.63

Table 1: EERs (%) of the classifiers exposed to different kinds of realistic noise scenarios, and to the combined set of all noisy files
(’All noise’). The best performing variant of each condition is emphasised with a bold typeface, with fusion considered separately.

Figure 5: The projected principal components of the embed-
dings learnt by the neural network. Each dot corresponds to an
activation of an example from the evaluation set. The activa-
tions are linearly transformed in such a way to maximise the
spread of the dots.

Figure 6: The figure shows the t-SNE projections in a similar
fashion as Figure 5. On the right, the difficult classes and the
bonafide classes distribution are shown too.
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A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 Bonafide
3.60 3.56 3.10 3.69 3.58 3.52 2.80 3.54 3.74 3.31 2.62 2.57 2.75 3.02

Table 2: Mean of predicted mean opinion scores by MOSNet.

Figure 7: The figure shows the internal PCA representation for
the samples which were noised with reverberation.

Figure 8: DET curves for each system for all noisy recordings
(solid lines) and all clean recordings (dashed lines).

seem to have a more rapid, louder onset of speech, which is
readily detected by our spoofing countermeasure.

4.7. Limitations of CQT/FFT based explainable audio

Because phase information is neglected both in constant Q-
transform and Fast Fourier Transform (FFT), the synthesised
explainable audio quality has some limitations. Our experience
is that in the case of FFT based audio synthesis (not used in
this paper) this is not a problem, while it certainly affects re-
construction quality based on CQT features.

4.8. Voice activity detection

Previous studies [2, 28] have used voice activity detection
(VAD) to focus on the speech regions of the audio signal for
spoofing detection; here we have not applied VAD, as we be-
lieve that some useful artefacts are present in the non-speech
regions of the signal, particularly in LA samples. However, we
acknowledge that the application of VAD is worthy of future
investigation.

5. Conclusion
In this paper we have proposed a novel combined CQT-
ResNet and GMM architecture for spoofing detection. We have
demonstrated it to perform effectively relative to the baseline
ASVspoof2019 countermeasures and have shown that it can
be fused with these systems to further improve performance.
We have shown that neural network based spoofing counter-
measures are generally more robust to noise than their GMM-
based baseline counterparts. Investigation using explainable au-
dio techniques enabled us to tap into ”the black box of neural
networks” in order to understand their behaviour by listening to
audio examples. Finally, we have shown that the embeddings of
the CQT-ResNet significantly correlate with an objective natu-
ralness function, providing evidence that it statistically models
the perceptual quality of utterances.
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