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Abstract

Audio Deepfakes, technically known as logical-access
voice spoofing techniques, have become an increased threat on
voice interfaces due to the recent breakthroughs in speech syn-
thesis and voice conversion technologies.

Effectively detecting these attacks is critical to many speech
applications including automatic speaker verification systems.
As new types of speech synthesis and voice conversion tech-
niques are emerging rapidly, the generalization ability of spoof-
ing countermeasures is becoming an increasingly critical chal-
lenge. This paper focuses on overcoming this issue by using
large margin cosine loss function (LMCL) and online frequency
masking augmentation to force the neural network to learn more
robust feature embeddings. We evaluate the performance of the
proposed system on the ASVspoof 2019 logical access (LA)
dataset. Additionally, we evaluate it on a noisy version of the
ASVspoof 2019 dataset using publicly available noises to sim-
ulate more realistic scenarios. Finally, we evaluate the pro-
posed system on a copy of the dataset that is logically replayed
through the telephony channel to simulate spoofing attacks in
the call center scenario.

Our baseline system is based on residual neural network,
and has achieved the lowest equal error rate (EER) of 4.04%
among all single-system submissions during the ASVspoof
2019 challenge. Furthermore, the additional improvements pro-
posed in this paper reduce the EER to 1.26%.

1. Introduction

The fast growing voice-based interfaces between humans and
computers have led to the need for more accurate voice biomet-
rics strategies. The accuracy of speaker verification technology
has improved by leaps and bounds in the past decade with the
help of deep learning. At the same time, the ability to spoof and
impersonate voices using deep learning based speech synthesis
systems have also significantly improved.

Such high quality text-to-speech synthesis (TTS) and voice
conversion (VC) approaches can successfully deceive both hu-
mans and automatic speaker verification systems. This has cre-
ated the need for systems to detect logical access attacks such
as speech synthesis and voice conversion to protect the voice-
based authentication systems from such malicious attacks.

ASVspoof! series started in 2015, and aims to foster the re-
search on countermeasure to detect voice spoofing. In 2015 [1],
the challenge focused on detecting commonly used state-of-
the-art logical speech synthesis and voice conversion attacks
that were largely based on hidden Markov models (HMM),
Gaussian mixture models (GMM) and unit selection. Since
then, the quality of the speech synthesis and voice conversion

Uhttp://www.asvspoof.org
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Figure 1: Overview of the proposed spoofing detection sys-
tem. 60-dimensional linear filter banks (LFBs) are extracted
from raw audio and fed into a Residual Network. FreqAugment
layer and large margin cosine loss are used during training the
ResNet model. After training this model, same training utter-
ances are fed into ResNet to extract spoofing embeddings, that
are then used to train the back-end genuine-vs-spoof classifier.

systems has drastically improved with the use of deep learn-
ing. WaveNet [2], proposed in 2016, was the first end-to-end
speech synthesizer that directly uses the raw audio for train-
ing, and showed a mean opinion score (MOS) very close to hu-
man speech. Similar quality was shown by other TTS systems
such as Deep Voice [3] and Tacotron [4], and also by VC sys-
tems [5, 6]. These breakthroughs in TTS and VC technologies
made the spoofing attacks detection more challenging.

In 2019, the ASVspoof [7] logical access (LA) dataset in-
cluded seventeen different TTS and VC techniques. The or-
ganizers took good care of evaluating spoofing detection sys-
tems against unknown spoofing techniques by excluding eleven
unknown technologies from train and development datasets.
Therefore, strong robustness is required for spoofing detection
system in this dataset.

The challenge results show that the current biggest problem
in a spoofing detection system is its generalization ability. Tra-
ditionally, signal processing researchers tried to overcome this
problem by engineering different low-level spectro-temporal
features. For example, constant-Q cepstral coefficients (CQCC)
were proposed in [8], cosine normalized phase and modified-
group delay (MGD) were studied in [9, 10]. Although these
works have confirmed the effectiveness of various audio pro-
cessing techniques in detecting synthetic speech, they are not
able to narrow down the generalization gap on ASVspoof 2019
dataset with the recent improved TTS and VC technologies.
A detailed analysis of 10 different acoustic features, includ-
ing linear frequency cepstral coefficient (CQCC) and mel fre-
quency cepstral coefficient (MFCC), was made on ASVspoof
2019 dataset in [11]. The results show that none of these acous-
tic features are able to generalize well on unknown spoofing
technologies. Also, using deep learning models to learn dis-
criminate feature embeddings for audio spoofing detection was
studied in [12, 13, 14]. A comprehensive study of different tra-
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ditional acoustic features and learned feature from autoencoder
was made in [15].

In this work, we tackle this challenge from a different per-
spective. Instead of investigating different low level audio fea-
tures, we try to increase the generalization ability of the model
itself. To do so, we use large margin cosine loss function
(LMCL) [16] which was initially used for face recognition. The
goal of LMCL is to maximize the variance between genuine and
spoofed class and, at the same time, minimize intra-class vari-
ance. Additionally, inspired by SpecAugment [17], we propose
to add FreqAugment, a layer that randomly masks adjacent fre-
quency channels during the DNN training, to further increase
the generalization ability of the DNN model. On the ASVspoof
2019 EVAL dataset, we achieve an EER of 1.81% which is sig-
nificantly better than the baseline. The proposed system is illus-
trated in Figure 1.

Furthermore, we investigate the effectiveness of audio aug-
mentation techniques. We augment the audio files using pub-
licly available noises, including freely available movies and TV
shows, music, other noises and room impulse responses to train
and evaluate our system under a noisy scenario. Adding aug-
mented data in the training dataset further reduces the EER from
1.81% to 1.64% on the ASVspoof 2019 EVAL dataset.

Finally, we study the performance of the proposed spoofing
detection system in a call center environment. Therefore, we
logically-replay the ASVspoof 2019 dataset through VoIP chan-
nel to simulate the spoofing attacks. Interestingly, we found
that, by adding those audio samples to the training data, the
EER is further reduced from 1.64% to 1.26% on the ASVspoof
2019 EVAL dataset.

This paper is organized as follows: Section 2 describes the
datasets used to train and evaluate the proposed spoofing detec-
tion system. Section 3 details the proposed spoofing detection
system. Section 4 presents the experimental results on different
evaluation datasets. Section 5 concludes this paper.

2. Datasets

We use three different training protocols and three different
evaluation benchmarks as shown in Table 1 and Table 2. The
following sections briefly describe the dataset and the data aug-
mentation method used in this work.

2.1. ASVspoof 2019 Challenge Dataset

ASVspoof 2019 [7] logical access (LA) dataset is derived from
the VCTK base corpus. It includes seventeen text-to-speech
(TTS) and voice conversion (VC) techniques. The spoofing
techniques are divided into two groups, six as known tech-
niques, eleven as unknown techniques. The entire dataset is
partitioned into training, development and evaluation sets. The
train and development sets include spoofed utterances generated
from two known voice conversion and four speech synthesis
techniques. However, only two known techniques are present
in the evaluation set. The remaining spoofed utterances were
generated from eleven unknown algorithms. The training and
evaluation parts of this data are named T1 and E1, respectively.

2.2. Augmented ASVspoof 2019

In order to evaluate our system under noisy conditions, data
augmentation is performed on original ASVspoof 2019 dataset
by modifying the the data augmentation technique from Kaldi.
Two types of distortions were used to augment the ASVspoof
2019 dataset: reverberation, and background noise. Room im-
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| Protocols [ Datasets [ # Utterances ‘
T1 ASVspoof 2019 train set 25,380
T2 T1 + Augmented train set 152,280
T3 T2 + logically-replayed train set 177,660

Table 1: The three training protocols used in this work. Tl is
the official protocol of the ASVspoof 2019 LA challenge.

| Benchmarks [ Datasets [ # Utterances ‘
El ASVspoof 2019 eval set 71,237
E2 Augmented eval set 356,185
E3 logically-replayed eval set 71,237

Table 2: The three evaluation benchmarks used to measure the
system performance under different acoustic conditions. EI is
the official evaluation set of the ASVspoof 2019 LA challenge.

pulse responses (RIR) for reverberation were chosen from pub-
licly available RIR datasets’ [18, 19, 20]. We chose four differ-
ent types of background noises for augmentation - music, televi-
sion, babble, and freesound®. One part of the background noise
files for augmentation were selected from the open source MU-
SAN noise corpus [21]. We also constructed a television noise
dataset using audio segments from publicly available movies
and TV shows from Youtube. Around 40 movies and as many
TV show videos were downloaded and segmented into 30 sec-
ond segments to construct the TV-noises set. In all, we col-
lected around 46 hours of TV-noises in our dataset. For music
and TV-noises, the audio was reverberated using a randomly
selected RIR from the RIR dataset. Then the speech utterances
were reverberated using randomly chosen RIRs and then the
reverberated noise was added to the reverberated speech utter-
ance. Babble noise was generated by mixing usgov utterances
from the MUSAN corpus. The freesound noises were the gen-
eral noise files from the MUSAN corpus which consisted of
files collected from freesound and soundbible. For babble and
freesound noises, we added the background noise files to the
clean audio and then reverberated the mixture using a randomly
selected RIR. The noises were added with a random SNR be-
tween 5dB to 20dB. The training part of this data together with
T1 is depicted as T2. Similarly, the evaluation part of this data
together with E1 is named E1.

2.3. Logically-Replayed ASVspoof 2019

To simulate voice spoofing in a call center environment,
Twilio’s Voice service® is used to playback ASVSpoof 2019
data over voice calls and recorded at the receiver’s end. The re-
sulting dataset has VoIP channel characteristics and has reduced
bandwidth from 16kHz to 8kHz sampling rate. Twilio’s default
OPUS codec® was used for encoding and decoding audio. This
dataset is used to evaluate benchmark (E3) to understand how
well our spoofing detection system generalizes in a call-center
environment. Also, the replayed training set is added to the pro-
tocol (T3). During training and testing, the dataset was upsam-
pled to 16kHz. The training part of this data together with T2

Zhttp://www.openslr.org/28/

3https://freesound.org/

“https://support.twilio.com/hc/en-us/articles/360010317333-
Recording-Incoming-Twilio-Voice-Calls
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Layer Filter size | #filters | Stride | Output size
Freq Masking - - - 200 x 60
Convl 3x3 64 1x2 | 200 x 30
MaxPooling 1x3 - 1x4 200 x 7
Res block 1 3x3 64 1x1 200 x 7
Res block 2 3x3 128 1x1 200 x 4
Res block 3 3x3 256 1x1 200 x 2
Res block 4 3x3 512 1x1 200 x 1
Mean and std - - - 1024
FC1 - - - 512
FC2 - - - 256
LMCL output - - - 2

Table 3: This table details the architecture of proposed ResNet.
All convolutional and fully connect layers are followed by batch
normalization and selu activation layer. The outputs from FC2
layer are used as feature embeddings.

is named T3. Similarly, the evaluation part of this data together
with E2 is named E3.

3. Methodology

In this section, we first describe the low-level features (Sec 3.1).
Then, we introduce the frequency masking layer (Sec 3.2) and
large margin cosine loss (Sec 3.3). Next section details the ar-
chitecture of the embedding extractor (Sec 3.4). Finally, we
present the overall spoofing detection system (Sec 3.5).

3.1. Low-level Features

The low-level features used in this work are linear filter banks
(LFBs). LFBs are a direct compressed version of the short-
time Fourier transforms (SFT), and thus more adequate for
lower computational cost. Additionally, they introduce lower
risk of network overfitting at training time. Similar filter bank
based cepstral features such as linear frequency cepstral coef-
ficients (LFCCs) also showed competitive performance in syn-
thetic speech detection [22] and speaker recognition [23]. We
use 60-dimensional LFBs extracted on 30 ms windows with a
10 ms frame shift. Mean and variance normalization was per-
formed on the utterance level. It is worth noting that no voice
activity detection is employed.

3.2. Frequency Masking

Online frequency masking is applied during training to ran-
domly drop out a consecutive frequency band range of
[fo, fo+ f). [ is chosen from a uniform distribution [0, F1],
where F' defines the maximum number of frequency channels
to be masked. Similarly fo is chosen from [0,v — f], where
v defines the total number of frequency channels of the input
LFB. The f and fj are randomly selected, and differ for every
mini-bach during training. The same frequency mask is applied
on all the training samples within a mini-batch. After creat-
ing frequency mask, an element wise multiplication operation
is done between original LFB and the frequency mask, so that
value of the selected frequency channel can be set to zero. Fig-
ure 2 shows an illustration of the LFB after frequency masking.
In this work, we set F to 12.
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(b) Output of the FreqAugment layer.

Figure 2: Comparison between the original and masked LFBs.
During training, the size and position of the frequency mask are
randomly selected, and differ for every mini-batch.

3.3. Large Margin Cosine Loss

Large margin cosine loss (LMCL) is originally proposed
in [16]. It aims to force the deep neural network to learn the
feature embedding that can maximize the inter-class variance
and minimize the intra-class variance, by reforming the soft-
max loss as a cosine loss and injecting a margin in the cosine
space. LMCL can be defined as:

eS(cos(Qyi ,i)—m)

Lime = — 3~
lmc N Z og es(EOS(Gyi,i)—m) + Zi;ﬁyi escos(gj’i)
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(€]
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cos(0;,1) = W, z;.

where N is the number of training samples, z; and W; denote
the normalized ¢-th feature and weight vector corresponding to
i-th class. W; denotes the weight vector of j-th class. s and m
are the hyper parameters to define the margin in cosine space.
In this work, we set s = 10 and m = 0.35.

3.4. Deep Residual Network

The baseline is our single system submission to the ASVspoof
2019 challenge, which consists in a deep residual network
(ResNet) based system. ResNet allows us to train an exten-
sively deeper network to achieve more compelling results. It
mitigates the gradient vanishing problem in deep neural net-
works by stacking residual blocks. The residual block is formed



Model
Techniques | Resnetl8 | Resnetl18-L | Resnetl8-L-FM
A07 1.10% 0.611% 0.489 %
A08 1.874% 0.954% 0.407 %
A09 0.024% 0.017% 0.017%
Al10 1.589% 1.239% 0.693%
All 0.750% 0.384% 0.081%
Al12 0.367 % 0.506% 0.896%
Al3 0.611% 0.292% 0.105%
Al4 4.604% 2.193% 1.345%
Al5 1.409% 0.873% 0.628 %
Al6 1.891% 1.076% 0.791%
Al7 12.780% | 7.589% 6.186 %
Al8 5.803% 9.504% 1.548 %
Al19 3.643% 3.127% 2.030%

Table 4: Detailed performance analysis on different spoofing
techniques. All the spoofing techniques listed above were not
included in the training protocols. Resnet18-L-FM model has
the lowest EER on almost all the spoofing categories.

by adding short-cut connections in between the convolutional
layers. This enables the gradients to flow to any other earlier
layer. In this work, we use pre-activation residual block pro-
posed in [24]. The Residual Network is a variant of the ResNet-
18 described in [25] where the global average pooling (GAP)
layer is replaced by mean and standard deviation pooling lay-
ers [26]. Additionally, we made some minor changes to the filter
size and stride so that the time resolution can be preserved af-
ter any convolutional layer and any residual block. After mean
and std pooling layers, the concatenated feature map is fed into
two consecutive fully connected layers with scaled exponential
linear unit (selu) activation [27]. We use length normalization
layer after the first fully connected layer to further regularize
our model. We train the ResNet to classify the audio recordings
into two classes: bonafide and spoofed, and the feature embed-
ding is extracted from the length normalization layer.

The proposed system in this paper is an improvement over
the baseline, where most of the architecture remain the same.
However, we applied frequency masking augmentation before
the input layer, remove the length normalization layer, and re-
place the softmax loss with large margin cosine loss (LMCL)
during training stage. Table 3 shows the detailed implementa-
tion and parameters of the proposed model. The ResNet model
is trained with ADAM optimizer [28] over 50 epochs.

3.5. System Architecture

Figure 1 shows an overview of our proposed spoofing detection
system. First, LFBs are extracted from the raw audio. Then, the
LFBs are fed into ResNet embedding extractor to generate deep
feature representations. The feature representations are length
normalized and fed into the backend classifier to decide whether
it is spoofed or genuine audio. The backend classifier is a neural
network that consists of one fully connected layer (FC) with 256
neurons, followed by batch normalization layer, dropout layer
with dropout rate of 50%, and one softmax output layer.

The ResNet embedding extrator model and the backend
classifer are trained separately. After training the embedding
extractor model, same training utterances are fed into the em-
bedding extractor to extract feature embeddings, that are then
used to train the backend classifier. The embedding extractor
and the backend classifier are both trained with ADAM opti-
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| Model [ Training protocol [ EER [ t-DCF ‘
ResNet18 T1 4.04% | 0.109
ResNet18-L T1 3.49% | 0.092
ResNet18-L-FM T1 1.81% | 0.052

Table 5: EER of different spoofing detection systems. L and FM
denotes LMCL and frequency masking.

mizer over 50 epochs.

4. Experiments

This section describes the experimental setup and evaluation
metrics, and presents the experimental results.

4.1. Experimental Setup

As described in Section 2, Table 1, and Table 2, we construct
three different training recipes and three different evaluation
benchmarks. The size of the training sets gradually increase
from T1 to T3. Similarly, the difficulty of the evaluation bench-
marks gradually increase from E1 to E3. In this paper, the detec-
tion task is to verify whether the utterance is genuine (positive
class) or not (negative class). The higher the score is, the more
likely the utterance is genuine.

Two key performance metrics are used to evaluate the sys-
tems. The first is EER that represents the point where false
rejection rate (FRR) equals the false acceptance rate (FAR). In
this case, the negative class is spoofing. Additionally, we plot
the detection error trade-off (DET) curve that shows the accu-
racy of the our system at different FRRs and FARs.

The second metric is the minimum normalized tandem de-
tection cost function (t-DCF) [29]. The t-DCF is defined as
follows:

t-DCF} o, = min { BPr(s) + Pia' ()} (3)
where 8 depends on application parameters (priors, costs) and
ASV performance, Py, (s) and P§;"(s) are the countermea-
sure system miss and false alarm rate at threshold s. In contrast
to the EER computation, the negative class in t-DCF computa-
tion is either spoofing or zero-effort impostor. Therefore, the
ASV scores should be provided. To keep the comparison fair
with ASVspoof 2019 challenge, we used the same ASV scores
provided by the organizers.

4.2. Results

Detailed results are shown in Table 5 and Table 6. During the
ASVspoof 2019 challenge, our single system submission de-
scribed in Section 3.4 has achieved an EER of 4.04% and t-DCF
of 0.109 on LA evaluation dataset (E1), which is the best per-
forming single system among all submissions. In this paper, we
have made a significant improvement over our state-of-the-art
system. By replacing the softmax with LMCL, the EER drops
to 3.49% and t-DCF 0.092. This shows the LCML is able to
force the model to learn more robust features that have better
generalization ability. Then, we add frequency masking layer
and further reduce the EER to 1.81%. Figure 3(a) plots the dif-
ferent DET curves of the three systems. It clearly shows that the
proposed methods bring good improvements over the baseline
on most operating points. A detailed performance analysis on
detecting different TTS and VC methods are listed in Table 4.



Benchmarks
Training Protocols El E2 E3
T1 1.81% | 20.43% | 8.70%
T2 1.64% | 5.34% | 8.21%
T3 1.26% | 5.32% | 2.62%

Table 6: Performance of ResNetl8-L-FM model trained using
different protocols.
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(b) DET curve for the three different training protocols.

Figure 3: DET curves on the ASVspoof 2019 (LA) evaluation
benchmark (E1). In these plots, the genuine label is the positive
class and the spoofing label is the negative class.

We further investigate the evaluation and training of our
spoofing detection system under noisy and telephony condi-
tions. Table 6 illustrates the detailed results. First, The system
trained with T1 achieves an EER of 20.43% on noisy condi-
tions (E2). However, by adding augmented data to the training
set (i.e. training on T2), the EER on E2 drops to 5.34%. And
more importantly, the EER on E1 dataset is reduced to 1.64%.
Finally, we evaluate the proposed system under call center envi-
ronment (E3). The system achieves reasonable EERs of 8.70%
and 8.21% on T1 and T2, respectively. However, by adding tele-
phony data to the training set (i.e. training on T3), the EER on
E3 drops to 2.62%. Surprisingly, T3 also improves the overall
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performance on E1 and E2.

Figure 3(b) plots the different DET curves on E1. They
clearly show the effectiveness of doing data augmentation as an
important approach towards better generalization.

5. Conclusions

In this paper, we propose a robust end-to-end deep learning
framework for voice spoofing detection, that can detect spoofed
audio generated from a wide variety of unknown TTS and VC
systems with high accuracy. We successfully demonstrate that
we can increase the generalization ability by adding FreqAug-
ment layer and large-margin cosine loss and applying data aug-
mentation. The experimental results show an EER of 1.26% on
ASVspoof 2019 evaluation set, which is a remarkable improve-
ment over the state-of-the-art.
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