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ABSTRACT 

The presentation concerns a method of wave-
morphing applied to a model of the phonatory 
excitation, the instantaneous frequency and the 
harmonic richness of which are controlled. This 
method is based on an interpolation between the 
Fourier coefficients of two template waveforms. 
The method enables morphing continuously 
from one waveshape to another. Possible 
applications are the simulation of diplophonia, 
biphonation and different phonation types. 

I. INTRODUCTION 

The presentation concerns a method of wave-
morphing based on Fourier series. It enables 
continuously changing one waveform into another. 
This method is applied to a model of the phonatory 
excitation signal, which is the acoustic signal 
generated by the vibrating vocal folds and pulsatile 
glottal airflow.  
 Conventionally, glottis signals are modeled 
by means of a concatenation of curves that 
approximate the glottal pulse shape. The most 
popular model based on this technique is the Fant-
Liljencrants model [1]. A sustained glottis signal is 
generated by repeating the basic pulse shape 
periodically. 
 We proposed here an alternative based on 
the Fourier signal representation, which offers a 
more flexible approach to phonatory excitation 
modeling. It enables controlling continuously the 
instantaneous frequency and harmonic richness of 
the synthetic phonatory excitation, as well as glottal 
pulse morphing. The morphing is carried out by 
interpolating the Fourier series coefficients between 
two different template glottal cycles. 

II. MODEL OF THE PHONATORY 
EXCITATION 

The model used to synthesize the phonatory 
excitation is based on Fourier coefficients. The 
Fourier coefficients are computed for a template 
cycle of the desired phonatory signal. The template 
cycle can be modeled or extracted from real speech. 
Here, we use the Fant-Liljencrants (LF) model [1] 
to synthesize the desired template. The LF 
parameters are chosen so that the condition of area 
balance is fulfilled, i.e. the cycle average is zero.  

A discrete periodic signal y of cycle length 
N can be approximated by its Fourier series 
truncated at Nh harmonics . 
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In expression (1), coefficients ak and bk encode the 
shape of the cycles of signal y and parameter N 
represents the cycle length. By changing the value 
of N, one can create signals with the same shape as 
y, but with different cycle lengths. Note that the 
following condition must be respected. 
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If N is assumed to be real, expression (1) can be 
written as follows. 
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where ∆+= − fnn πθθ 21 , is the instantaneous 
frequency of signal  y(n) and ∆  is the sampling 
step. Condition (2) becomes the following. 
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The generalization of N to real values, because of 
letting assume  any real positive value, 
introduces a quantization error of one sample at 
most in the cycle length. For many applications, 
this error is negligible when the sampling frequency 
is chosen sufficiently high.  

f

Therefore, by means of a glottal cycle 
template, a signal with the same cycle shape, but 
the instantaneous frequency of which is controlled, 
can be synthesized by means of (3). Figure 1 shows 
an example of a phonatory excitation, for which the 
instantaneous frequency evolves continuously and 
linearly in time. 

 
Figure 1 : Synthetic phonatory excitation, the 
instantaneous frequency of which evolves linearly 
from 75 to 200 Hz. The vertical axis is in arbitrary 
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units, and the horizontal axis is labeled in number 
of samples. 
 

The harmonic richness of the synthetic 
signal can be controlled by modifying the Fourier 
coefficients as follows. This choice has been 
loosely inspired by [2]. 
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One sees in expression (5) that the harmonics 
decrease, when the parameter A is less than one, the 
faster the higher their order. 

 
Figure 2 : The graph to the left shows two different 
cycles of the phonatory excitation. The dashed line 
is obtained with parameter A  set to 1 and the solid 
line is obtained with parameter A set to 0.5. The 
vertical axis is in a.u. and the horizontal axis is 
labeled in samples. The graph to the right shows, 
dashed, the values in db of 

kk jba +  and, solid,  the 
values in db of 

kk jba '' +  with A set to 0.5. The 
horizontal axis is labeled in the values of Fourier 
index k. 
 
The control of the harmonic richness of the 
phonatory excitation may also be used to simulate 
onsets and offsets as illustrated in Fig.3. 

 
Figure 3 : Synthetic phonatory excitation where 
parameter A evolves linearly from 0 to 1 and from 1 
to 0. The vertical axis is in a.u. and the horizontal 
axis is labeled in number of samples. 

III. WAVE-MORPHING 

Given two sets of Fourier coefficients X1 and X2 ,in 
complex notation, computed for two different 
template cycles, intermediary shapes can be 
synthesized  by interpolating the Fourier 
coefficients as follows (Figure 4). 
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where Int is an interpolation coefficient comprised 
between 0 and 1. 
As a consequence, the Fourier phase and the 
logarithm of the Fourier magnitude are linearly 
interpolated. Therefore, coefficients ak and bk 
change as follows : 
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To avoid possible phase distortions in morphed 
signals, care should be exercised to respect the 
following condition.  
   )arg()arg()arg()arg( 121121 ++ −<− kkkk XXXX       
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To satisfy this condition, one computes the 
arguments of the two sets of complex Fourier 
coefficients X1, X2, and subtracts 2π from the 
argument of X2 if condition (8) is not satisfied. The 
reason is that the phase of the morphed shape must 
be intermediary between the phases of the template 
cycles, which is possible provided that the 
arguments of coefficients X1 and X2 evolve quasi-
monotonously.  

 
 

 
Figure 4 : Above, the graphs show the magnitude in 
db (to the left) and  phase in radians (to the right) of 
the complex Fourier coefficients. Below, the dotted 
lines correspond to the template glottal cycles, and 
the solid line corresponds to the interpolated glottal 
cycle, with interpolation coefficient Int set to 0.5. 
Above, the horizontal axis is labeled in the values 
of Fourier index k. Below, the horizontal axis is 
labeled in number of samples. 

IV. RESULTS 

A. MORPHING 

Figure 5 illustrates the phonatory excitation signal 
while morphing from one cycle template to another, 
e.g. illustrating the transition from one phonation 
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type to another. The interpolation coefficient 
evolves, between samples 600 and 3600, linearly 
from zero to one. 

 
Figure 5 : Morphed synthetic phonatory excitation. 
The vertical axis is in a.u. and the horizontal axis is 
labeled in number of samples. 

B. DIPLOPHONIA 

Diplophonia refers to periodic phonatory excitation 
signals whose mathematical periods comprise 
several unequal glottal cycles. A repetitive 
sequence of different glottal cycle shapes can be 
simulated by modulating the interpolation 
coefficient, i.e. by continuously interpolating the 
Fourier coefficient between two sets of template 
coefficients X1, X2, computed from two different 
reference glottal cycles. Similarly, a modulation of 
the instantaneous frequency may simulate a 
repetitive sequence of glottal cycles of unequal 
lengths. The temporal evolution of the interpolation 
coefficient as well as phase may then be written as 
follows. 
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The instantaneous frequency oscillates between f0 – 
f1  and f0 + f1 . Parameter Q fixes the number of  
different glottal cycles within the mathematical 
period of the phonatory excitation. In practice, 
parameter Q is a small integer. 

Figure 6 shows an example of diplophonia 
obtained by modulating the interpolation coefficient 
as well as the phase according to expressions (9) 
and (10), with Q set to two. 

 
Figure 6 : Synthetic phonatory excitation 
demonstrating diplophonia. The vertical axis is in 
a.u. and the horizontal axis is labeled in number of 
samples. 
 

C. BIPHONATION 

Biphonation is also characterized by a sequence of 
glottal cycles of different shapes and lengths. But in 
this case, two glottal cycles are never identical. 
Biphonation reflects the presence in the spectrum of 
the signal of at least two harmonic series, the 
fundamental frequency of which form an irrational 
ratio. Biphonation is therefore characterized by 
discrete spectra with irrational ratios between the 
frequencies of some of the partials. Biphonation is 
also simulated by means of expression (9) and (10), 
with parameter Q equal to an irrational number. 

Figure 2 shows an example of biphonation 
obtained with Q set to the constant e ( 2.71).  

 
Figure 7 : Synthetic phonatory excitation 
demonstrating biphonation. The vertical axis is in 
a.u. and the horizontal axis is labeled in number of 
samples. 
 
Note that diplophonia and biphonation can also be 
simulated by modulating phase (10) and parameter 
A instead of interpolation (9). This is because 
parameter A controls the harmonic richness and 
therefore the shape of the cycle. The control is less 
flexible however. 

V. CONCLUSION 

This presentation concerns a model of the 
phonatory excitation based on Fourier series. This 
model enables the control of the instantaneous 
glottal cycle length, instantaneous harmonic 
richness and glottal cycle shape via distinct 
parameters. This model also enables  interpolating 
between two template cycle shapes. The shape of 
the cycles of the phonatory excitation may morph 
continuously from one shape to another. These 
possibilities are useful to simulate onsets and 
offsets, intonation, phonation type transients as well 
as diplophonia and biphonation.  
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