Search is a central component of any statistical machine translation system. We describe the search for phrase-based SMT in detail and show its importance for achieving good translation quality. We introduce an explicit distinction between reordering and lexical hypotheses and organize the pruning accordingly. We show that for the large Chinese-English NIST task already a small number of lexical alternatives is sufficient, whereas a large number of reordering hypotheses is required to achieve good translation quality. The resulting system compares favorably with the current stateof- the-art, in particular we perform a comparison with cube pruning as well as with Moses.