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Abstract
Emotion expression and perception are nuanced, complex,

and highly subjective processes. When multiple annotators la-
bel emotional data, the resulting labels contain high variabil-
ity. Most speech emotion recognition tasks address this by av-
eraging annotator labels as ground truth. However, this pro-
cess omits the nuance of emotion and inter-annotator variabil-
ity, which are important signals to capture. Previous work has
attempted to learn distributions to capture emotion variability,
but these methods also lose information about the individual
annotators. We address these limitations by learning to predict
individual annotators and by introducing a novel method to cre-
ate distributions from continuous model outputs that permit the
learning of emotion distributions during model training. We
show that this combined approach can result in emotion distri-
butions that are more accurate than those seen in prior work, in
both within- and cross-corpus settings.
Index Terms: speech recognition, emotion recognition,
human-computer interaction, inter-annotator agreement

1. Introduction
Expressions of emotion are nuanced and complex, and peo-
ple perceive these expressions differently, adding to the com-
plexity. Most emotion recognition models overlook this nu-
ance [1]. This is because most Speech Emotion Recognition
(SER) datasets and tasks present the ground truth as a single
label, which is the average of multiple annotations. In this
work, we present novel approaches to both accurately learn the
perceptions of individual annotators and aggregate these esti-
mates to create distributions of annotator perception. In this
way, the model retains information about individual annotator
predictions while still being able to summarize the information
accurately as a two-dimensional (2D) distribution.

Prior work has investigated methods to retain information
about variability and uncertainty. Research has included the
prediction of measures such as unbiased annotator standard de-
viation [2, 3], the embedding of individual annotators to im-
prove performance on the aggregated ground truth, with some
investigation into how well the model annotator uncertainty cor-
relates with real uncertainty [4, 5, 6], and the prediction of the
distribution of annotations over a given utterance [7]. Yet, gaps
remain. Methods that summarize model information or predict
uncertainty lose fine-grained information about individual an-
notators. On the other hand, methods that seek to learn annota-
tors primarily do so to improve performance on the aggregated
ground truth or investigate much smaller numbers of annotators
than are generally used in these datasets.

We present a novel approach that predicts the annotations
of individuals and includes a new differentiable method to au-

tomatically learn distributions similar to [7], enabling the mod-
eling of individual variation and the retention of the ability to
summarize annotators. The model training involves an inter-
leaved approach, alternating between different tasks: learning
individual annotators and learning a distribution. We learn indi-
vidual annotators by training a multi-task (MT) model to predict
each annotator in the training set across the dimensions of va-
lence and activation. We learn a distribution by upsampling the
observations from the MT model and using Kernel Density Es-
timation (KDE) to produce a summarization of the model out-
put as a distribution. We introduce differentiable KDE into the
model training process to enable the use of gradient descent.

We present both within- and cross-corpus investigations.
Within-corpus, we find that a model trained with the interleaved
tasks of individual annotator perception and distribution learn-
ing can outperform a method that learns to predict the distribu-
tion alone [7], in terms of both the performance on consensus
labels and the accuracy of the distribution itself, while providing
individual annotations as well. We further show that the output
of the annotator-specific models (trained only on annotator pre-
diction) can be post-processed to create a distribution, rather
than learning a distribution during model training, that outper-
forms the prior work of [7]. In this case, an extra step is involved
in which the output of the annotator-specific models is trans-
formed into a distribution using either KDE as in [7] or using
the differentiable KDE method presented in this work. We find
that using differentiable KDE leads to significantly improved
performance, even when only used in post-processing, point-
ing to the efficacy of this approach for either model learning or
post-hoc output summarization. Cross-corpus, we demonstrate
that annotator-specific models can be used zero-shot without
knowledge about the annotators that labeled the new datasets.
We find that the presented approach outperforms a distribution-
only method across metrics that capture individual annotators
and the accuracy of a given distribution in most cases. Future
work will focus on investigating individual characteristics of an-
notators (e.g., personality) and how this information can also be
considered when learning annotator-specific perception.

2. Related Work
Previous work has developed soft-label methods that use multi-
ple annotators per label. Dang et al. [8] use multi-rater Gaussian
Mixture Regression to make temporal emotion predictions for
a fixed set of consistent evaluators in their target dataset. Other
approaches have captured both the uncertainty in annotator la-
bels and model uncertainty [9]. However, a gap remains at the
intersection of predicting individual annotations for a variable
number of annotators.

Instead, we build on the label processing method devel-
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oped in previous work by Zhang et al. [7], which incorporated
inter-annotator variance into machine learning models by creat-
ing new ground truth labels that incorporate this knowledge [7].
They upsampled existing annotations by selecting random sub-
sets of annotators for each utterance and took the mean across
those annotations. They added random noise to the resulting
means, such that x noise ∼ U(− std(x)

2
, std(x)

2
)1, where x is

activation or valence, std indicates the standard deviation of the
annotator ratings for that utterance, and U is the uniform dis-
tribution. Kernel Density Estimation (KDE) via Diffusion was
then calculated over the upsampled observations. They divided
the KDE output grid into N bins for each dimension and took
the mean over the KDE samples inside each bin. They con-
verted this grid to a probability distribution by normalizing over
the means. The authors investigated N = 2 and N = 4. The
KDE step was essential to remove sensitivity to where bound-
aries were drawn. The authors then trained a model to pre-
dict these binned distributions. However, in this approach, the
model loses information about individual annotators. Addition-
ally, because the approach is not differentiable, it cannot be in-
cluded in model training. We present an approach with a differ-
entiable component that permits learning a binned distribution,
implemented using sigmoid-based soft operations.

Previous work has investigated the prediction of individual
annotators on subjective tasks such as emotion recognition and
hate speech [4, 5, 10]. Davani et al. introduced an encoder-
based model with separate classification heads for each annota-
tor. They trained this model for a binary categorical text emo-
tion recognition task using a dataset that contained 82 anno-
tators. At test time, they aggregated the individual annotator
predictions and found that their model outperformed a baseline
trained on majority ground truth labels. However, the perfor-
mance of individual annotators was not discussed. Further, a
limitation of this work is that many SER datasets include over
82 annotators, and the authors acknowledge that it would be too
computationally expensive to train a model with separate heads
for large numbers of annotators. Previous work has shown that
clustering similar annotators can mitigate problems with large
numbers of annotators [11]. However, clustering annotators
loses information about individual ratings. In our work, we en-
able only the relevant heads per batch, making training with a
large number of annotators more computationally feasible.

An alternative approach to learning individual annotators
is through annotator embeddings [5]. Prior work from Kocoń
et al. demonstrates that annotator-specific embeddings can be
used to personalize model predictions and capture the bias of
individual annotators. They introduced four methods for encod-
ing annotator information into the model, including a one-hot
annotator embedding. This embedding was a one-hot encoded
vector of annotator ID that was concatenated to the model in-
put. They found that this led to improved text-based emotion
predictions but were focused on a consensus model rather than
an individual-specific model. We use the one-hot model and
investigate if the model can learn individual annotators.

3. Experiments
3.1. Data setup

We use the MSP-Improv dataset for training and testing. It was
labeled using crowdsourcing and has a relatively large number
of evaluations per utterance [7, 12]. Additionally, we use the

1We also add ϵ = 1E−12 to this value to account for cases where
standard deviation is 0.

IEMOCAP, MSP-Podcast, and MuSE datasets to evaluate the
cross-corpus results of each method.

MSP-Improv is an SER dataset consisting of acted impro-
vised dialogue designed to evoke certain emotions [12]. The
dataset has 12 speakers evenly split between male and female
actors across six sessions. We select a speaker-independent data
split such that all annotators in the validation and test set have
evaluated at least one utterance in the training set. Annotators
will be present in the training set that do not appear in the valida-
tion or test set (for example, when the annotator annotated less
than three samples). The resulting train, validation, and test split
size is 5,851, 1,287, and 1,300 utterances, respectively2. The
training set was evaluated by 1,434 individual crowdsourced
annotators, with each sample receiving between 5 and 50 an-
notations (mean of 7.2). A subset of these annotators evaluated
the validation and test set (1,305 and 1,197, respectively). Both
validation and test set samples have between 5 and 37 evalua-
tions per sample, with a mean of 7.3 and 7.6 annotators. In few
samples (28) the same annotator has annotated more than once.
In these cases we have averaged their annotations into one eval-
uation, and adjusted the mean ground truth for these samples.

The IEMOCAP dataset contains five dialogue sessions
containing scripted and improvised interactions between two
actors. There is one female and one male actor in each con-
versation [13]. We remove utterances where individual annota-
tions were partially missing or any annotator evaluations were
not within the labeling range described in the data collection.
After processing, the dataset consists of 9,999 samples. Six an-
notators labeled the dataset with an average of 2.13 annotators
per sample. We test on the full dataset.

MSP-Podcast is a dataset of speech taken from podcasts
and then labeled [14]. We use the predefined splits and evaluate
on test set 1, which is comprised of 13,911 utterances and con-
tains 9570 individual annotators. Each utterance was evaluated
by 6.9 crowdsourced annotators on average. We use release
1.8, which does not contain transcripts, so we use Microsoft
Azure automatic speech recognition to generate them.

MuSE is a dataset of 28 college students recorded in two
45-minute sessions each, responding to emotional stimuli. One
session was when the students were affected by an external
stressor, and the other was without the stressor [15]. Students
were recorded using a lapel microphone. Crowdsourced annota-
tors evaluated each utterance. There are 2,584 utterances com-
prised of 1,385 stressed and 1,199 non-stressed samples. The
dataset provides labels annotated with or without context; we
use the labels from the 160 individual annotators who labeled
without context. Each sample was evaluated between 7 and 9
annotators, with 8 on average.

Dataset Preprocessing We process all datasets in the same
way. We use min-max scaling on the annotator and consensus
labels for activation and valence to restrict labels to the [−1, 1]
range. We then use KDE to generate a 2D ground truth proba-
bility distributions as in [7]. We use a KDE grid size of 512 as
we assume this will be sufficiently large to ensure the probabil-
ity is insensitive to the grid boundaries.

3.2. Model Architecture

We present three models: a baseline, a MT model, and a one-hot
model, all of which share the same base architecture but have
different output head architectures (Figure 1). The model input
includes the frozen mean-pooled final layers of Wav2Vec2 [16]

2The code to create the data splits can be found at
https://github.com/chailab-umich/ModelingIndividualEvaluators.
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Figure 1: Model Architectures. Layers in gray are the common architecture between models. In (b) and (c) the last two common layers
are duplicated as they split the model to two predictions.

and BERT [17] CLS embeddings as these have shown effec-
tiveness in SER applications [18, 19]. We apply dropout with
probability 0.2 and concatenate the embeddings. The concate-
nated embedding is passed through a single linear layer of size
256 with ReLU activation. For each prediction (distribution,
activation, or valence), the input will pass through two linear
layers of size 256 with ReLU activations.

The baseline model directly learns the generated KDE dis-
tribution (as in [7]), having a final linear layer output of 16 log-
its for the 4x4 discretized KDE distribution prediction case. The
MT model has separate prediction layers for each annotator as
in [17]. Each annotator’s continuous prediction of activation
and valence is made via a linear layer with an output size of
1. We use the one-hot method, previously used for text emo-
tion recognition [20]. We use the same architecture as in the MT
case but with only one annotator prediction head. The annotator
ID is one-hot encoded and concatenated to the Wav2Vec2 and
BERT embeddings on the model input. When training within
corpus, we reduce computation cost by making predictions only
for annotators in the batch input to the model.

3.3. Training Tasks

In this section, we define three different training tasks. The
Baseline model is trained with the Baseline task. MT and one-
hot models are trained by interleaving Tasks 1 and 2 (Task 1+2),
defined below. We use stochastic gradient descent with a learn-
ing rate of 0.001, with a learning rate scheduler that adjusts the
learning rate by a factor of 0.1 after five epochs of no reduction
in validation metrics. We train models until early stopping trig-
gers with a patience of 10 with a minimum of 30 epochs. Each
model trains with a batch size of 32. For all methods we use the
relevant task’s validation losses.

Baseline: We predict the flattened 2D distribution and use
cross-entropy loss of the 16 logits output against the flattened
2D generated ground truth probability distributions [7].

Task 1 - Annotator Training: We train annotator-specific
predictions using the individual annotator ground truth. We use
Lin’s Concordance Correlation Coefficient (CCC) loss as our
loss function since it better models dimensional attributes than
other regression losses [21]. The sets act, and val contain the
ground truth labels from all annotators in a training batch. The
sets mact and mval contain the model’s estimates of these la-
bels. The loss is 2− CCC(mact, act)− CCC(mval, val).

Task 2 - DiffKDE: We learn the probability distribution us-
ing the KDE-generated ground truth labels. The model must
produce a probability distribution from the model’s activation

and valence predictions. However, the KDE method outlined
by Zhang et al. in [7] is not immediately usable. KDE via dif-
fusion starts with a histogram [22]. For each annotation we
must know if it is in a particular bin to increment the bin’s his-
togram count. This operation is a binary operation and not dif-
ferentiable. We introduce a differentiable approximation to this
problem by instead calculating a confidence value that a given
annotation is within a given bin. We modify an existing one-
dimensional (1D) soft-histogram3, as below, for the 2D data.

We use 64 bins for DiffKDE4. We first calculate the 1D cen-
ter of each bin in the range −1 to 1. For each of the n anno-
tations of activation, we subtract the center of each bin from
the annotation, resulting in a 64 size vector, which we call x.
The contribution to the 64 bins will then be calculated using an
element-wise sigmoid on this vector, sigmoid(σ ∗ (x+ δ

2
))−

sigmoid(σ ∗ (x − δ
2
)). The gradient of sigmoid is largest at

zero, for values of x far from 0, the δ
2

term has less effect, and
the bin value is close to 0. This function is maximized for val-
ues of x close to 0. We repeat this for valence to get two n× 64
matrices for activation and valence.

In the equation, σ is a scaling parameter; the larger the
value, the more sharp the histogram is, and δ is the bin size.
Since our data is in the range −1 to 1, and we use 64 bins,
δ = 2

64
. We then matrix multiply these two n× 64 matrices by

transposing one to get a 2D (64× 64) matrix. We then normal-
ize to get a final 4 × 4 probability distribution as in [7]. There
is a tradeoff where too large of a σ may lead to vanishing gra-
dients, but too low may result in undersaturation [23]. As such,
we set σ relatively small at 8; lower values did not reduce loss.
Future work could investigate the impact of modifying the σ
parameter. The generation of probabilities in DiffKDE is done
in float165 as it significantly speeds up calculations.

We base our work off an existing KDE via Diffusion li-
brary6, which we modify to use PyTorch and the soft histogram
method from the previous paragraph. All code is available
on our GitHub page7. This enables DiffKDE to be run on
GPUs and parallelized into batches. DiffKDE Loss is the Cross-
Entropy loss8 of the DiffKDE output, compared with the gener-
ated ground-truth 2D labels.

3https://discuss.pytorch.org/t/differentiable-torch-histc/25865/4
4Note: smaller than 512 (used to generate target labels) for speed
5We use float64 during validation and testing for KDE accuracy.
6https://pypi.org/project/KDE-diffusion/
7https://github.com/chailab-umich/ModelingIndividualEvaluators
8After normalization, we add ϵ = 1E−8 to avoid taking log of 0.
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Table 1: MSP-Improv probability distribution results (*=sta-
tistical significant improvement compared to baseline,
†=statistical significant decline). ↑ indicates higher is better, ↓
indicates lower is better. Each metric’s best result is bolded.

Model TVD↓ JSD↓ Activation
CCC↑

Valence
CCC↑

Baseline .515±.004 .213±.003 .673±.008 .573±.020
MT .503±.001* .211±.001 .741±.005* .571±.005
One-hot .518±.006 .228±.004† .689±.014* .607±.017*

3.4. Evaluation Metrics
We first evaluate the ability of the proposed approaches to learn
continuous predictions and then the ability of the system to
learn distributions. The baseline cannot directly produce con-
tinuous ratings, while the proposed approaches can. In order
to provide a fair comparison, we generate consensus predic-
tions across all methods in the same manner: we sum along
the activation/valence dimensions and then multiply this sum
with [−1,−0.5, 0.5, 1]. We use CCC to measure the systems’
ability to predict individual annotators’ labels (note: we cannot
evaluate the baseline for this task). Next, we evaluate the con-
sensus predictions by comparing them to the averaged ground
truth using CCC. Finally, we measure the differences between
the learned and ground truth probability distributions using To-
tal Variation Distance (TVD), and Jensen-Shannon Divergence
(JSD) [7]9. Test results are reported over five seeds. Signifi-
cance asserted at a 5% confidence on a paired two-sided t-test.

4. Results
4.1. MSP-Improv Results
The MT approach predicts annotator-specific activation more
accurately than the one-hot model (0.629± 0.002 vs. 0.349±
0.015, respectively) while the one-hot model has stronger per-
formance for valence (0.393 ± 0.006 vs. 0.429 ± 0.007, re-
spectively). The consensus output for both the MT and one-hot
approaches show significant improvements in activation CCC
compared to the baseline. In contrast, only the one-hot method
significantly improves valence. Overall, we find that the MT
model learns more accurate distributions compared to the base-
line when using the soft-histogram across both metrics, showing
signficant improvement over the baseline for TVD. The one-
hot method has comparable TVD and statistically significantly
worse JSD than the baseline. See Table 1 for more details.

4.2. Ablation Results
We investigate the importance of the interleaved training tasks
for learning the distributions. In the previous experiments, we
used DiffKDE during training and testing (Task 1+2). When
using Task 1 alone, no distribution is used during training, so
the best method to build the distribution is uncertain. We gen-
erated results for Task 1 alone using both KDE and DiffKDE to
generate distributions. We find that when using DiffKDE there
is a significant performance increase for TVD (0.553±0.003 to
0.500±0.003) and JSD (0.265±0.002 to 0.211±0.002). This is
very similar to the performance of Task 1+2 (Table 1).

4.3. Cross-Corpus Results
In a cross-corpus (zero-shot) context, the model does not have
information about all annotators in advance. Therefore, we use

9We use natural logarithm for JSD instead of log2

Table 2: Cross-corpus zero-shot Activation, Valence results,
*,†,↑,↓ as in Table 1. P: MSP-Podcast, I: IEMOCAP, M: MuSE

Dataset Baseline MT-1 MT-12

TVD↓
P 0.601±0.003 0.507±0.002* 0.518±0.005*
I 0.633±0.002 0.614±0.002* 0.613±0.002*

M 0.530±0.004 0.484±0.007* 0.470±0.002*

JSD↓
P 0.274±0.002 0.213±0.001* 0.220±0.003*
I 0.310±0.002 0.302±0.002* 0.302±0.002*

M 0.218±0.003 0.192±0.005* 0.182±0.002*

Act.
CCC↑

P 0.261±0.014 0.261±0.008 0.235±0.012†
I 0.374±0.010 0.429±0.010* 0.381±0.015

M 0.173±0.022 0.202±0.014 0.209±0.012*

Val.
CCC↑

P 0.368±0.003 0.332±0.009† 0.302±0.011†
I 0.321±0.011 0.255±0.007† 0.219±0.011†

M 0.198±0.017 0.202±0.013 0.162±0.007†

all annotator predictions from the model. We use the MT ap-
proach as it has generally outperformed one-hot models. The
MT models excel in cross-corpus performance and significantly
outperform the baseline in all probability distribution measures
(TVD and JSD) on all datasets. Additionally, we find statisti-
cally significant increases in Activation CCC performance on
the IEMOCAP and MuSE datasets for both the annotator-only
trained model (Task 1) and the interleaved tasks trained model
(Task 1+2). The outlier is Valence CCC, which generally de-
creases compared to the baseline. See Table 2.

The MT models generally struggled with the valence di-
mension, showing significant decreases compared to the base-
line. Given that we are using all annotators for zero-shot test
time, it is likely many annotator predictions that did not learn
valence well have influenced the valence dimension negatively.
Ultimately, we believe that using all annotators as we have done
in a zero-shot setting is not an upper bound for performance of
these models. Instead, selecting a subset of trained annotators
may significantly increase performance in the zero-shot setting.

5. Conclusion

Learning individual annotators is challenging. The model must
learn a very large number of annotators across both the dimen-
sions of activation and valence. We have presented an approach
that accurately predicts individual annotators and a differen-
tiable KDE operation that can be applied to a multi-task an-
notator models to produce distributions more accurately than
using KDE to generate the distributions. We find that a multi-
task model sufficiently learns the individual annotators to pro-
duce a probability distribution that outperforms methods that
only learn distributions while retaining information about indi-
vidual annotators. Furthermore, we have found significant im-
provement in multiple zero-shot settings when using the multi-
task model over the baseline. We believe these methods can
potentially increase utility to the end-user by providing more
information about model predictions retained in the model. Fu-
ture work also includes improving the capability of the model to
capture valence, which will likely improve the distribution per-
formance as well. Additionally, we believe the method provides
avenues into studying how emotion models can predict specific
to groups of annotators or leverage the knowledge of annotators
to improve zero-shot cross-corpus performance.
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