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Abstract
Speech discrete representation has proven effective in various
downstream applications due to its superior compression rate of
the waveform, fast convergence during training, and compati-
bility with other modalities. Discrete units extracted from self-
supervised learning (SSL) models have emerged as a prominent
approach for obtaining speech discrete representation. How-
ever, while discrete units have shown effectiveness compared
to spectral features, they still lag behind continuous SSL rep-
resentations. In this work, we propose MMM, a multi-layer
multi-residual multi-stream discrete units extraction method
from SSL. Specifically, we introduce iterative residual vector
quantization with K-means for different layers in an SSL model
to extract multi-stream speech discrete representation. Through
extensive experiments in speech recognition, speech resynthe-
sis, and text-to-speech, we demonstrate the proposed MMM can
surpass or on-par with neural codec’s performance under vari-
ous conditions.
Index Terms: discrete speech representation, self-supervised
learning, discrete speech unit

1. Introduction
Efficient representation of speech signals is fundamental for a
wide array of speech processing tasks, ranging from automatic
speech recognition (ASR) to text-to-speech (TTS) synthesis.
Traditionally, spectral features such as linear spectrograms or
mel spectrograms have been extensively used in speech process-
ing due to their robustness and interpretability [1, 2]. However,
with the advent of deep learning, there has been a paradigm shift
towards utilizing neural networks as feature extractors, offering
improved performance over traditional methods [3, 4].

More recently, self-supervised learning (SSL) approaches
have gained prominence in speech representation learning.
These methods leverage large amounts of unlabeled speech data
to learn powerful representations, surpassing previous state-of-
the-art results on various benchmarks [5–13]. However, con-
tinuous SSL representations often suffer from scalability issues
in terms of storage, computation, and integration with other
modalities [14–17]. This has led to a growing interest in dis-
crete speech representation approaches, which offer more effi-
cient and compact representations.

Two prominent methods that have emerged are SSL-based
units and neural audio codecs. SSL-based units leverage clus-
tering methods in an unsupervised manner to convert continu-
ous SSL representations into discrete units, initially explored
for speech resynthesis and subsequently proven effective in
tasks such as speech translation (ST), ASR, TTS, and spoken
language understanding [15, 16, 18–25]. However, while SSL-
based units offer efficiency and effectiveness benefits, they of-

ten fall short of achieving better performance than continuous
SSL representations and lack detailed acoustics for speech gen-
eration purposes [15, 23, 26].

On the other hand, neural audio codecs focus on audio
resynthesis tasks, employing neural networks to learn auto-
encoder architectures for discrete codec generation. A key com-
ponent of recent neural codec methods is the use of residual vec-
tor quantization (RVQ) in the discretization process, resulting
in multi-stream audio compression that retains subtle audio de-
tails with enhanced expressiveness [26–29]. This property has
led to extensions of neural audio codecs to text-to-speech and
spoken language models, demonstrating robust speech genera-
tion capabilities in zero-shot multi-speaker TTS scenarios [30–
32]. However, neural codecs optimized for resynthesis tasks of-
ten lack semantic information due to their focus on streaming
efficiency and short-context representation [16].

Despite their differences, limited comparative studies exist
between SSL-based units and neural audio codecs under com-
parable conditions. Notably, SSL-based units typically operate
in a single-stream setting, which offers less information capac-
ity compared to multi-stream codecs.

This study propose a multi-layer multi-residual multi-
stream (MMM) framework to extract discrete speech repre-
sentation from continuous SSL representations. Specifically,
we conduct RVQ-style quantization with K-means clustering to
enable multi-stream discrete tokens in each single SSL layer.
By combining with streams from multiple SSL layers, we fur-
ther enhance the richness of the SSL-based units. With exten-
sive experiments in ASR, we reveal that the proposed MMM-
based discrete speech units elevates the performance of origi-
nal single-stream SSL by a large margin and almost approaches
the top-line performance with continuous SSL representation.
While maintaining better ASR performance, we also demon-
strate that the MMM-based units could achieve comparable
or better performance to the neural codec-based approach in
speech resynthesis and TTS.

2. Methodology
SSL discrete units are derived from a single-layer hidden rep-
resentation within a specific SSL model. Given a speech signal
x, we represent an SSL model as S, which produces layer-wise
representations denoted as R = [R1, . . . ,RL], where L sig-
nifies the number of layers in S. For a particular layer l, each
element rl ∈ Rl comprises a sequence of vectors [rl

1, . . . , r
l
T ],

with T representing the frame count. Upon selecting step t for
analysis, we employ a l-th layer K-means model as Kl to de-
termine Kl cluster centroids. With these cluster centroids ob-
tained by K-means training, we can cluster the feature vectors
rl
t by finding the optimal cluster index, which minimizes the
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Euclidean distance between rl
t and each cluster centroid clk as:

kl
t = argmink∈1,...,Kl ||rl

t − clk||2. (1)

The final cluster IDs [kl
1, . . . , k

l
T ] serve as discrete units at par-

ticularly layer l for subsequent downstream tasks
In this study, we broaden the application from a single-

stream scenario to encompass multi-stream scenarios. To
achieve this, we propose two complementary strategies for
multi-stream modeling, which involve leveraging either a sin-
gle layer or multiple layers from the SSL model S.

2.1. Multi-stream from a single layer

The first approach concentrates on generating multiple streams
from a single layer within the SSL model. Citing [10], it’s
demonstrated that the single-layer continuous representation,
specifically from a HuBERT-base model, contains sufficient de-
tail for audio resynthesis at frame resolutions of both 40ms and
100ms. Nonetheless, the resynthesis audio quality markedly
deteriorates following quantization via K-means. This decline
highlights a significant limitation: discrete units derived from
K-means quantization tend to omit intricate acoustic details
originally present in the waveform signals.

To counteract the information loss inherent in quantization,
our method involves estimating additional streams of discrete
units. This process is aligned with the principle of RVQ, adher-
ing to the unsupervised nature of the original K-means-based
approach. For training, in the l-th layer, we iteratively estimate
m-th K-means model Km,l on the residual feature from previ-
ous K-means models [K1,l, . . . ,Km−1,l]. During inference, the
cluster index km,l

t in frame t can then be obtained through itera-
tive procedures. The following equations elaborate the detailed
inference steps from the first stream to stream m.

k1,l
t = argmink∈1,,...,K1,l

∣∣∣∣∣∣rl
t − c1,lk

∣∣∣∣∣∣2 , (2)

k2,l
j = argmink∈1,,...,K2,l

∣∣∣∣∣∣(rl
t − c1,lt )− c2,lk

∣∣∣∣∣∣2 , (3)

...

km,l
j = argmink∈1,,...,Km,l

∣∣∣∣∣
∣∣∣∣∣
(
rl
t −

m−1∑
u=1

cu,lt

)
− cm,l

k

∣∣∣∣∣
∣∣∣∣∣
2

,

(4)

where we define cm,l
t as the selected centroid at t, i.e., cm,l

t :=

cm,l
k |

k=k
m,l
t

. Estimated km,l
t becomes the discrete unit of the

m-th stream at t-th frame.

2.2. Multi-stream from multiple layers

While Section 2.1 elaborated on enhancing discrete representa-
tions through a single SSL model layer l, an alternative strat-
egy employs multi-layer representations. Historically, the in-
tegration of information across multiple layers in SSL models
has proven invaluable, particularly when leveraging frozen SSL
representations for downstream tasks. This is exemplified in the
Speech Universal PERformance Benchmark (SUPERB), where
layer-wise representations are combined through a weighted
sum approach, achieving commendable results across a variety
of speech processing tasks [12]. Subsequent research further
validates this approach, demonstrating that different layers of

an SSL model encapsulate distinct facets of speech-related in-
formation [7, 10, 11, 13, 33, 34].

In the context of discrete representations, the significance
of utilizing multi-layer information becomes even more pro-
nounced. Reliance on a single layer for information extraction
may inadvertently prioritize certain features while overlooking
others, a discrepancy that becomes especially noticeable fol-
lowing the quantization process (see Section 2.1). Therefore, a
multi-layered approach not only diversifies the extracted infor-
mation but also mitigates the risk of information bias, ensuring
a more holistic representation of speech signals.

The formulation of multi-layer multi-stream discrete repre-
sentations can be easily extracted from continuous representa-
tion R. To be specific, we specify L′ layers from the multi-
layer representation R. Then, for the K-means model Km,l′ of
a selected layer l′, the designated cluster IDs [km,l′

1 , . . . , km,l′

T ]
can be used as the discrete token for downstream tasks. The
final MMM-based representation with M × L′ streams can be
obtained by combining the multi-stream extraction methods in
Section 2.1 and Section 2.2.

2.3. Application of MMM-based discrete units

Building on existing literature using discrete representa-
tions [15, 16, 19, 20, 25, 30–32, 35, 36], we explore the ap-
plication of MMM-based discrete units as either inputs or out-
puts across various applications. Our investigation encompasses
both scenarios, employing a strategic approach to integrate dis-
crete representations into downstream tasks.

Input Scenario: For representations used as inputs, we ini-
tially transform these discrete entities into embeddings. Sub-
sequently, we apply a summation across different streams to
integrate these embeddings. Specifically, for streams derived
from a single layer, a direct summation of embeddings is ex-
ecuted, mirroring the inverse operation of the RVQ technique.
Conversely, when dealing with streams from multiple layers,
we adopt a learnable weighted summation for their aggregation.
This method leverages learnable weights, optimized through a
Softmax function, aligning with strategies from the SUPERB
series [12, 13, 37–39]. This approach ensures that the integra-
tion of multi-layer streams is both dynamic and informed by
the data. In cases where streams are sourced from both RVQ
and multiple layers, we first combine embeddings from identi-
cal layers before proceeding to merge across different layers.

Output Scenario: For outputs utilizing MMM-based units,
we implement a straightforward parallel approach that indepen-
dently predicts various streams of tokens. This decision is dif-
ferent from prior work on neural audio codecs, where it was
noted that models trained on RVQ necessitate auto-regressive
modeling to maintain decoder quality [30, 32, 40]. Despite this,
our pilot experiments indicate that the impact of such modeling
on SSL-based units is minimal, thereby justifying our prefer-
ence for a simpler, parallel prediction method for MMM-based
discrete tokens.

3. Experiments
As discussed in Section 2.3, the discrete token can be applied
in both input and output scenarios. For the input scenario, we
select the two classical tasks of the proposed method: ASR and
speech resynthesis (i.e., vocoder). The two tasks consider both
usages in understanding and generation. For the output sce-
nario, we conduct TTS, which serves as the backbone of most
other tasks that produce discrete units [23, 41].
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Table 1: ASR performance on discrete speech challenge dataset.
“+” indicates single-layer multi-stream setting and “†” stands
for multi-layer multi-stream setting. M/L′ corresponding to
number layers in single/multi-layer multi-stream settings.

SSL Streams Librispeech ML-SUPERB (1h) Bitrate
M × L′ WER CER

WavLM 1 * 1 6.3 22.8 548.3
XLS-R 1 * 1 14.1 21.4 548.3
Encodec 8 15.9 35.9 6000.0

WavLM+ 2 * 1 5.9 21.4 1096.6
WavLM† 1 * 4 5.0 20.8 2193.2
XLS-R+ 2 * 1 10.5 19.3 1096.6
XLS-R† 1 * 4 7.3 18.0 2193.2

WavLM+† 2 * 4 4.7 19.5 4386.3
XLS-R+† 2 * 4 6.8 17.5 4386.3

3.1. Speech recognition

Dataset: Our ASR experiments align with the discrete speech
challenge at Interspeech2024.1 We utilize a dataset compris-
ing Librispeech’s train-clean-100h [42] combined with the ML-
SUPERB multilingual 1-hour set [13]. This blend enables the
examination of both clean English read speech and multilingual
ASR tasks. The total dataset spans 310.4 hours and encom-
passes 143 languages, offering a broad spectrum for evaluation.
SSL Models: Informed by insights from [13, 15, 39] and the
challenge’s baseline, we recognize the distinct performance ca-
pabilities of WavLM [7] and XLS-R [8] across different cor-
pora. WavLM-large exhibits notable effectiveness in English
datasets, whereas XLS-R (300M version) is better suited for
multilingual datasets. To comprehensively assess performance
across both English and multilingual corpora, we employ these
models as our primary SSL candidates.
Clustering and Downstream Settings: Consistent with the
challenge’s baseline, we opt for a random subsampling of 30%
of the training set utterances for K-means clustering, setting the
cluster size at 500 for each stream, i.e., Km,l = 500. Deviating
from the baseline, our methodology eschews additional byte-
pair encoding and deduplication, simplifying the alignment of
different streams. The downstream model leverages the same
encoder-decoder architecture within ESPnet [43] as the chal-
lenge baseline.
Proposed Method: Following the methodology outlined in
Section 2, we extract multi-stream tokens from both a sin-
gle layer and multiple layers. For the single-layer approach,
two (M = 2) streams of discrete representations are extracted
from the 21st layer of both WavLM and XLS-R. For multi-
layer scenarios, we select four (L′ = 4) layers ({9, 15, 21,
22}) to balance compression efficiency and performance. As
in Section 2.2, the two methods can be combined to yield eight
streams of tokens.
Baseline and Ablation Studies: Our baseline comparison uses
the single-layer, one-stream SSL units as defined in the chal-
lenge. Additionally, we use the publicly-availble Encodec-
24kHz model [28] with 8 streams as another baseline. Ablation
studies are conducted for both single-layer (with M = 2, 4, 8
streams) and multi-layer configurations, including a variety of
layer selections. Layer selection for multi-layer scenarios is
optimized using a model with all layers, employing learnable
weighted summation (see Section 2.3), and then selecting the
top four weighted layers for further analysis.

1https://www.wavlab.org/activities/2024/
Interspeech2024-Discrete-Speech-Unit-Challenge/

Table 2: ASR ablation studies on the single-layer setting over
discrete speech challenge dataset.

SSL Streams Librispeech ML-SUPERB (1h) Bitrate
M WER CER

WavLM+ 1 6.3 22.8 548.3
WavLM+ 4 6.1 21.5 2193.2
WavLM+ 8 6.4 21.7 4386.3

WavLM+ 2 5.9 21.4 1096.6

Table 3: ASR ablation studies on the multi-layer setting over
discrete speech challenge dataset. Detailed layer indexes are
shown in the “Layers” column.

SSL Layers Librispeech ML-SUPERB (1h) Bitrate
L′ WER CER

WavLM† 21 6.3 22.8 548.3
WavLM† 1-4 6.8 27.7 2193.2
WavLM† 11-14 6.1 21.9 2193.2
WavLM† 21-24 5.5 21.5 2193.2

WavLM† 0-24 4.9 19.9 13707.2

WavLM† 9, 15, 21, 22 5.0 20.8 2193.2

Evaluation Metrics: We follow the setting in the discrete
challenge for evaluation metrics, including average word error
rate (WER) for Librispeech test sets and weighted average char-
acter error rate (CER) for ML-SUPERB test sets (i.e., normal
test set and few-shot test set). Bitrate is also reported, following
the discrete speech challenge guidelines.
Results and Discussion: The main results, as depicted in
Table 1, illustrate that our proposed method uniformly en-
hances performance across both Librispeech and ML-SUPERB
datasets for both SSL models. Additionally, the performance
improvements yielded by the two proposed approaches appear
to be complementary. Compared to Encodec tokens, even
the single-stream discrete token sequences have better perfor-
mances. The finding is aligned with the observations in [16]
where SSL-based discrete representations outperform the neu-
ral codec-based method, specifically Encodec.

Our detailed ablation studies focusing on the number of
streams are summarized in Tables 2 and 3. In the context of the
single-layer multi-stream approach, augmenting the number of
streams does not always lead to performance enhancement. As
highlighted in Table 2, the ASR performance drops when the
stream count is increased to 4 or 8, compared to the two-stream
scenario. This deterioration could be attributed to the potential
instability associated with employing K-means for higher-order
residual information extraction. Conversely, for the multi-layer
multi-stream scenario, optimal performance is attained when all
layers are utilized at the cost of a higher bitrate. By selecting
the layers with the top four weights, we show that it’s possible
to maintain performance levels with only a slight degradation
while achieving a significant reduction in the bitrate.

3.2. Speech resynthesis (vocoder)

Dataset: Our speech resynthesis experiments are anchored in
the TTS (vocoder) track of the discrete speech challenge at In-
terspeech 2024. We utilize a curated subset of the Expresso
benchmark [26], focusing on a single-speaker dataset and ex-
cluding segments with singing, overlapping speech, and long-
form content. The experiments adhere to the official train-dev-
test partitioning provided by the challenge organizers.2 To align

2https://github.com/ftshijt/Interspeech2024_
DiscreteSpeechChallenge
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Table 4: Speech resynthesis performance on discrete speech challenge dataset (filtered Expresso). “+” indicates single-layer multi-
stream setting and “†” stands for multi-layer multi-stream setting. M/L′ corresponding to number layers in single/multi-layer multi-
stream settings.

SSL Streams (M × L′) MCD F0 RMSE UTMOS Bitrate

HuBERT 1 * 1 7.19 0.42 2.27 448.3
Encodec 8 3.91 0.21 3.18 3586.4

HuBERT (S) 2 * 1 6.79 0.32 2.89 896.6
HuBERT (M) 1 * 4 5.12 0.22 3.10 1793.2

HuBERT (S+M) 2 * 4 4.54 0.20 3.22 3586.4

Table 5: TTS performance on discrete speech challenge dataset (LJSpeech).

SSL Streams (M × L′) MCD F0 RMSE WER UTMOS Bitrate

HuBERT 1 * 1 7.19 0.26 8.1 3.73 448.3
Encodec 8 7.01 0.29 7.8 4.01 3586.4

HuBERT (S) 2 * 1 7.11 0.29 8.0 3.79 896.6
HuBERT (M) 1 * 4 7.25 0.24 7.7 4.06 1793.2

HuBERT (S+M) 2 * 4 7.15 0.25 7.7 4.15 3586.4

with the original SSL model’s specifications, audio samples at
48kHz are downsampled to 16kHz for compatibility.
Experimental Set-ups: Echoing prior studies [19, 20, 24, 26,
41] in discrete-based speech resynthesis that predominantly uti-
lize HuBERT [6], our experiments also employ a pre-trained
HuBERT-base model trained on the full Librispeech dataset via
S3PRL[12]. Clustering is performed on the respective train-
ing sets with a designated cluster size of 500 per stream. The
discrete HiFiGAN model serves as our downstream backbone,
configured in accordance with [24]. For our baseline, the 9th
layer is selected for extracting single-stream SSL units, drawing
from the methodology in [19, 20, 24]. In exploring multi-stream
capabilities, we investigate two (M = 2) streams for single-
layer scenarios, four (L′ = 4) streams for multi-layer config-
urations3, and an integrated approach yielding eight streams
(M × L′ = 8). We referred to these multi-stream configura-
tions from the experimental findings in Section 3.1. Additional
Encodec baselines are trained on the same training set based on
AudioCraft [40]. We set the Encodec model with 8 streams at
a 50Hz frame rate. For each stream, the codebook size is set to
be 500, to be aligned with our experiments.
Evaluation Metrics: The evaluation framework prioritizes
objective metrics in line with the discrete speech chal-
lenge’s guideline. These metrics include mel cepstral dis-
tortion (MCD), F0 root mean square error (F0 RMSE), UT-
MOS [44], and bitrate. The MCD and F0 RMSE metrics are
calculated using the ESPnet-TTS toolkit [45, 46].
Results and Discussion: Table 4 illustrates that our proposed
method outperforms the baselines in UTMOS and F0 RMSE.
Compared to the single-stream baseline, both of our proposed
approaches not only improve all evaluated metrics, but also
exhibit complementary benefits to each other. Notably, even
when compared to Encodec, our method demonstrates superior
UTMOS and F0 RMSE scores. This is particularly significant
given that our discrete tokens are extracted unsupervisedly and
are not explicitly optimized for the resynthesis task.

3.3. Text-to-speech

Dataset: For TTS, our examination leverages the LJSpeech
dataset, a single-speaker female TTS corpus, in alignment with

3Layer 6, 9, 11, 12 are used, following the same selection strategy
as the ASR track. We use the same setting for TTS experiments.

the discrete speech challenge recommendations. We rigorously
adhere to the official dataset partitioning for the training set, as
detailed by the challenge guidelines.
Experimental Set-ups: The TTS modeling experiments inherit
several configurations from the speech resynthesis task. This in-
cludes utilizing the HuBERT-base SSL model, adopting a clus-
ter size of 500 for K-means clustering, employing the entire
training set for clustering, and integrating the discrete HiFi-
GAN model. Distinctively, our downstream TTS model em-
ploys a modified VITS architecture, substituting its adversarial
decoder with a transformer network designed to directly predict
discrete units. This modification is informed based on the ESP-
net VITS LJSpeech recipe and draws inspiration from [18].4

Evaluation Metrics: The evaluation framework utilize MCD,
F0 RMSE, UTMOS and bitrate. In addition, we also report CER
as assessed by a pre-trained Whisper-large-V2 model [47].
Results and Discussion: The outcomes of the TTS experi-
ments, as displayed in Table 5, echo the observations made
in the vocoder experiments detailed in Section 3.2. Compared
to the Encodec model, we observe significant enhanced natu-
ralness (reflected in improved UTMOS scores) with the TTS
system trained on our proposed multi-stream tokens. This en-
hancement could be attributed to the SSL tokens possessing a
richer semantic content, offering extra advantages in acoustic
modeling when used as output. This semantic richness in SSL
tokens likely facilitates a more effective acoustic representation
for acoustic modeling, thereby enhancing the overall natural-
ness of the synthesized speech.

4. Conclusion
In this study, we reexamine the extraction of SSL-based discrete
tokens, focusing on multi-stream modeling. We focus on two
approaches: single-layer and multi-layer modeling. With exten-
sive experiments across ASR, speech resynthesis, and TTS, we
showcase that multi-stream tokens from SSL models can usu-
ally improve upon the single-stream SSL tokens. Moreover, we
also find the proposed representations attain performance lev-
els that are either superior to or on par with those achieved by
neural codec methods.

4Hyperparameters are in line with ESPnet VITS LJSpeech recipe.
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