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Abstract

Distance Metric Learning (DML) has typically dominated
the audio-visual speaker verification problem space, owing to
strong performance in new and unseen classes. In our work,
we explored multitask learning techniques to further enhance
DML, and show that an auxiliary task with even weak labels
can increase the quality of the learned speaker representation
without increasing model complexity during inference. We also
extend the Generalized End-to-End Loss (GE2E) to multimodal
inputs and demonstrate that it can achieve competitive perfor-
mance in an audio-visual space. Finally, we introduce AV-
Mixup, a multimodal augmentation technique during training
time that has shown to reduce speaker overfit. Our network
achieves state of the art performance for speaker verification,
reporting 0.244%, 0.252%, 0.441% Equal Error Rate (EER)
on the VoxCeleb1-O/E/H test sets, which is to our knowledge,
the best published results on VoxCeleb1-E and VoxCeleb1-H.
Index Terms: speaker verification, multimodal, audio-visual,
person representation, multi-task learning

1. Introduction

Human interactivity with artificially intelligent systems con-
tinue to gain popularity, especially as devices become capable
of advanced tasks and are seamlessly integrated with our daily
lives (e.g., digital assistants). A critical component to enabling
personalized interactions with such systems is speaker verifica-
tion, the process of identifying whether a speaker matches with
a pre-enrolled speaker profile. Applications can range from
user authentication to personalized experiences, however, en-
vironmental noise and visual occlusion are only a few of the
challenges associated with performing reliable speaker verifi-
cation in real-world settings [1]. To this end, multimodal sys-
tems have been increasing in popularity due to the potential of
added robustness and improved performance [2]. For the case
of speaker verification, leveraging both audio and visual modal-
ities, in particular, have shown improvement in false-reject rates
when compared to audio-only and visual-only systems [3] [4]
(51161 17].
This work explores to improve upon the existing bench-
marks in audio-visual speaker verification without expending
on model complexity, by introducing data-efficient training and
augmentation strategies. Our main contributions are as follows:
1. We demonstrate that multi-task learning with inexpensively-
obtained, weak labels can be used to enhance the representa-
tions learned by DML.

2. We extend the Generalized End to End Loss (GE2E) [8] from
aunimodal to a multimodal input space, and for the first time,
validate its efficacy beyond an audio-only task.

3. We introduce AV-Mixup, a multimodal augmentation strat-
egy to reduce speaker overfit and improve generalization.

The collection of these contributions yield SOTA perfor-
mance with EER of 0.244%, 0.252%, and 0.441% on the
VoxCeleb1-O/E/H test splits.

2. Background
2.1. Related Works

Prior studies reveal interesting developments in audio-visual
speaker verification. However, a majority rely on traditional
DML training approaches, and in general, devise complex net-
works or rely on expensive data collection to realize modest
performance gains. For example, Qian et al. [4] introduced
a joint learned embedding-level network architecture, trained
with their contrastive loss sampling and data augmentation
strategy originally presented in [7]. Sun et al. [9] implemented
joint-attention pooling on the audio-visual inputs that enhance
the weights of impactful time frames. Tao et al. [10] cited noisy
labels in large-scale datasets as a significant limitation, and pro-
posed a two-step multimodal deep cleansing network to iden-
tify and remove noisy training samples. Finally, Lin et al. [11]
introduced a large-scale dataset that showed improved perfor-
mance when used as a supplementary training set, with best re-
sults on their ResNet with frequency-wise Squeeze-Excitation
model (denoted M3).

Our work differs by hypothesizing that DML can be en-
hanced by introducing even a weakly supervised multi-task
component to the objective function. This is on the basis of
[12], where it was shown that the features learned through clas-
sification and contrastive approaches can differ. Further, rather
than extensive data collection or dataset cleansing, we hypoth-
esize that noisy labels can be beneficial to achieve more ro-
bust speaker representations, by extending training methods and
proposing novel augmentation techniques that collectively serve
as regularization during training for open-set tasks.

2.2. Multimodal Fusion

Multimodal fusion has been achieved through many different
techniques [1] [13] [14]. For robustness in non-ideal scenarios
in the audio-visual domain, the attention-based fusion network
(AFN) proposed in [1] is of particular interest. AFN learns to
adapt to corrupt or missing modalities by re-weighing the con-
tribution of either modality at time of fusion. This is through an
attention mechanism that extended across the modality axis to
obtain modality attention weights:

&{a,v} = fatt([em ev]) = WT[emev] + b, 1

where e, and e,, are transformed audio and visual represen-
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Figure 1: System level diagram of the REPTAR network. The multimodal representation feeds into the training heads, which are
removed during inference time. For inference, the multimodal representation can be used directly for speaker verification

tations, respectively. Learnable parameters W7 and b are opti-
mized during the training process. Modality attention weights
are then re-scaled via Softmax to obtain scores between [0, 1]
and applied across the embedding axis prior to aggregation to
form the fused multimodal representation.

2.3. Generalized End-to-End (GE2E) Loss

The GE2E loss, originally proposed in [8] for audio-based
speaker verification, adopts an approach that uses class centroid
distances during optimization. Specifically, the loss is calcu-
lated from a similarity matrix between each utterance represen-
tation embedding to all speaker utterance centroids. From this
matrix, a total contrastive loss is calculated based upon positive
components and a hard negative component.

3. Robust Audio-Visual Person Encoder
3.1. Generalized End-to End Multimodal Loss

Large scale datasets often contain noisy labels that can confuse
networks during training and limit performance. We, however,
propose to leverage these noisy samples to improve generaliz-
ability. We hypothesize that using a centroid-based optimiza-
tion approach, outliers and noisy labels will act as a regularizer
during training to lead to better generalization. We achieve this
through extending the GE2E loss to a multimodal input space,
and refer to this new loss function as GE2E-MM.

The GE2E-MM architecture relies on batching N x M au-
dio and visual inputs, T(,,},5 (1 < j < N,1 < i < M),
where NV and M are unique speakers and speaker utterances,
respectively.

We define the audio-visual latent representation as:

_ [(Xayji;Xu,ji; W)

[[f (Xaji5 Xo,563 W) |2
where f(Xa,ji;Xo,ji; W) represents the transfer function of the
neural network, with X, j; and X, j; representing raw audio and
visual inputs; and w representing the network weights. Using
this, a similarity matrix, Sj; x, of scaled cosine similarities is
computed, representing a similarity metric between each multi-
modal embedding e;; and each speaker centroid, ¢, from the
N x M batch:

@

€ji

1 M
Ck =37 D €m 3
m=1
Sji,k =w- cos(ej,-, Ck) +b 4

where w, b are learnable parameters. Using this similarity
matrix, a contrastive loss is calculated for each multimodal rep-
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resentation, e;;, focusing primarily on all positive pairs and a
hard negative pair. The GE2E-MM loss, L¢, is then defined as:

Ls(S) = Zﬁ(eﬁ) ®)

where,

,C(Eji) =1- O'(Sji,j) 4+ max O'(Sji’k)

1<k<N
k]

where o represents the sigmoid function. Optimization of

Equation 6 has the effect of pushing embeddings from identi-

cal speakers towards its respective centroid, and away from its

closest dissimilar speaker centroid.

6

3.2. Multi-Task Objective Function

We hypothesize that adding an age classification task will force
more subtle characteristics to be extracted from the inputs and
embedded in the multimodal representation. With this auxiliary
task, we can define a multi-task loss function:

Lyvrr =7 La(S)+ (1 —7) Lavx, @)

where v is a scalar weight that is applied in order to balance the
losses and prevent one task from dominating. The parameter is
obtained through hyper-parameter tuning. Lo and Layx are
GE2E-MM and auxiliary task losses, respectively.

3.3. AV-Mixup for Multimodal Augmentation

Audio and visual samples sourced from the same utterance can
be highly correlated on speaker-irrelevant features [15] [16].
This can limit the learning of distinctive features and instead
cause the training to focus on peripheral attributes such as
noise or environmental factors. To prevent this, we propose
AV-Mixup, an augmentation technique whereby unique audio-
visual pairs are recreated using audio and visual samples that
are extracted from disjoint utterances from the same speaker.

Using the AFN for audio-visual fusion, we implemented the
above-mentioned developments to form the end-to-end encoder
network: ‘Robust Encoder for Persons through Learned Multi-
TAsk Representations’ (REPTAR), shown in Figure 1.

4. Experimentation
4.1. Setup
4.1.1. Dataset and Preprocessing

VoxCeleb is a large-scale audio-visual dataset for speaker
recognition and is widely used in literature. For our experimen-



tation, VoxCeleb2 [17] was used for training while pre-defined
test splits from VoxCelebl [18] were used for evaluation.
During pre-processing, utterance video files were decom-
posed into face tracks at a 1 frame per second (FPS) rate and
re-scaled to 160 x 160 pixels, and a voice track cropped to
a random window size between 4-8 seconds. For evaluation,
utterances were sourced from the predefined test splits. Voice
clips were limited to a fixed 4 second window with a random
onset time and faces were extracted from the same utterance.

4.1.2. Voice and Face Representation

Pre-trained encoders were used to obtain voice and face rep-
resentations. For voice profiles, RawNet3, proposed in [19]
was used. RawNet3 was trained on the VoxCeleb2 dataset
and evaluated on the VoxCeleb1-O test split and demonstrates
competitive EER performance. For face representation, the
InceptionResnet-V1 architecture [20] was used, which was pre-
trained on the VGGFace2 [21] dataset. VGGFace2 was con-
firmed to have a negligible overlap between the test set (5 out
of 1251 speakers), which was verified to play no impact to the
model performance when rounded to three significant figures.

4.1.3. Multimodal Fusion

For our implementation of the AFN, the 512 dimension face
embedding and 256 dimension voice embedding obtained from
their pre-trained models are L2 normalized and transformed in-
dependently into a 512 dimension space for equal representa-
tion prior to fusion. This transformation consists of two linear
layers, with a ReLU activation and batch normalization layer in
between. The attention layer is implemented as a linear layer
with input size 1024 and output of 2 to represent the modality
scores. These softmaxed scores are applied as multiplicative
factors to the transformed representations, which are then con-
catenated to form the multimodal representation.

4.1.4. Weakly-Supervised Auxiliary Task

An age prediction auxiliary task was implemented to enhance
feature learning during training. The task head consisted of two
linear layers with a ReLU activation and batch normalization
layer in between. A sigmoid layer was used at the end of the
network to represent normalized age predictions. Mean-squared
error loss was used as the objective function. The optimal ~
value in the compound loss function of Equation 7 was deter-
mined to be 0.015 through hyperparameter tuning.

Age labels were obtained from the AgeVoxCeleb dataset
[22], which contain estimated ages for approximately 5000 of
6112 speakers of the VoxCeleb2 dataset. These labels can be
considered weak due to label inaccuracies and incompleteness.

4.1.5. Training and Evaluation

Our proposed REPTAR model was trained on a Tesla V100
GPU. Batch size was set to 64 with 10 utterances per speaker.
The Adam optimizer [23] was used with an exponentially de-
caying learning rate, initially set to 0.05 and decaying at a fac-
tor of 0.9 per epoch. Early stopping with a patience of 5 epochs
was used to prevent overfitting. Multiple seeds were tested to
demonstrate reproducibility of results.

The Equal Error Rate (EER) metric was calculated for each
of the VoxCelebl test splits to evaluate the performance of the
speaker verification system. EER corresponds to the error rate
at which the False Positive Rate (FPR) and False Negative Rate
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Figure 2: Interclass and Intraclass Pairwise Distance Distribu-
tion of Triplet and GE2E-MM models for a random speaker.

Table 1: Quality of encoded person representation clusters
against triplet and GE2E-MM loss (with, without auxiliary task)

[:GEZEfAIIM

Clustering Metric Liriplet
NoAuzx Auzx
Silhouette Score [24] (1) 0.233 0.501 0.504
Calinski-Harabasz [25] (1) 4541 6264 6454
Davies-Bouldin [26] (]) 1.4657 0.8613 0.8599

(FNR) is equal, and is a standard metric used for speaker verifi-
cation [18].

4.2. Results and Ablation Studies

We performed extensive experiments to study the effect of each
of the proposed strategies. This section describes the results
obtained along with a comparison to other relevant works.

4.2.1. Effect of the GE2E-MM Loss:

The impact of the GE2E-MM loss was analyzed by studying
the encoded audio-visual representations of speaker utterances
from identical networks that differed only on the objective func-
tion they were trained on (GE2E-MM or Triplet [27]). Intraclass
pairwise Euclidean distance was measured between all combi-
nations in the set of utterance encodings obtained from the same
speaker. Similarly, interclass pairwise distance was measured as
the Euclidean distance between the reference speaker’s encoded
utterance centroid with that of the utterance centroid for every
other speaker in the set.

The intraclass and interclass sample distributions for the
triplet loss and GE2E-MM loss models are shown in Figure 2.
Results show significant reduction in the overlap between intra-
class and interclass distributions on the GE2E-MM loss trained
network, implying more compact person representations. To
validate this further, we employ the Silhouette coefficient [24],
Calinski-Harabasz score [25], and the Davies-Bouldin score
[26] on the test set. As shown in Table 1, the GE2E-MM loss
show improved cluster quality for all three metrics.

4.2.2. Effect of the Weakly-Supervised Auxiliary Task and AV-
Mixup Multimodal Augmentation:

The results in Table 1 show the improvement of cluster quality
when comparing to the same network trained without the addi-
tional task loss. This sentiment is echoed in the results of Ta-



Table 2: Ablation study showing the effect of proposed loss func-
tion, auxiliary task training, and AV-Mixup on EER.

Loss Training Config Evaluation (VC1)
Aux  AV-Mix o E H
Triplet [27] N Y 6.85 9.57 5.16
GE2E-MM N N 0427 0321 0.568
GE2E-MM N Y 0.323  0.292 0.507
GE2E-MM Y Y 0.244 0.252 0.441

Table 3: EER of REPTAR in the presence of corrupted and miss-
ing modalities on the VoxCelebl-O test split

Architecture  Audio Input  Visual Input | EER
clean clean 0.24

corrupt clean 1.98

REPTAR missing clean 1.12
clean corrupt 6.12

clean missing 1.64

Table 4: EER measurements on various training dataset config-
urations. Best results per evaluation split are in bold

Model Train Set Evaluation (VC1)
VC2 VB (6] E H
Lin et al (M3)[11] Y N 0622 0.761 1.391
REPTAR Y N 0244 0.252 0441
Lin et al (M3)[11] Y Y 0441 0.681 1.268
REPTAR Y Y 0196 0316 0.537

ble 2, showing an average 17% EER improvement on the VC1-
O/E/H test splits. We believe that the age classification auxil-
iary task ensured that distinctive markers from both modalities
are preserved in the multimodal representation to help general-
ization and improve overall performance.

Through randomization of visual and audio speaker inputs
by AV-Mixup, we were able to see an average 15% improve-
ment in performance compared to a model trained using audio
and visual inputs from the same utterance. Similar to the find-
ings of Nagrani et al. [16] on disentangled linguistic content
and speaker identity yielding better generalization, we believe
our improvement is also as result of minimizing mutual infor-
mation, but within the speaker audio-visual input space.

4.2.3. Effect of Corrupted and Missing Modality:

Measuring robustness to non-ideal situations was performed by
recreating absent or corrupt modalities. An absent modality was
emulated by setting the input to zero. A corrupt input was emu-
lated using additive white Gaussian noise (AWGN), with 4 = 0
and o, = [0,255] or 0, = [—1, 1], where ;& and o are mean
and standard deviation, respectively. This methodology is con-
sistent with existing literary works [1].

The results in Table 3 show that the multimodal network is
robust to missing or corrupt inputs without significantly com-
promising performance. This can be compared to other archi-
tectures that rely on both modalities to be present, a constraint
that is not always feasible in real-world scenarios.
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Table 5: Proposed model EER performance compared to SOTA.
Lower value signifies a better result. Best results are in bold

Model Modality VoxCelebl

0 E H
A 231 223 378
Chen et al [7] \% 226 154 237
AV 0585 0427 0735
A 162 175 3.6
Qian et al [4] \% 3.04 218 323
AV 0558 0441 0.793
A 099 124 227
Sun et al [9] \% 144 128 214
AV 0.18 026 049
Lin etal (M3) [11] AV 0622 0761 139
Lin etal (M4) [11] AV 0580 0775 144
A 164 112 185
REPTAR v L12 119 182
AV 0244 0252 0.441

4.2.4. Effect of Additional Training Data:

The VoxBlink-clean (VB) dataset was explored as a poten-
tial complementary training dataset [11], and was compared to
against the reported benchmarks. Results are shown in Table
4. Despite the additional set of 1.45M utterances across 38K
new speakers, a degradation of performance on the VC1-E/H
splits was observed. This leads us to believe that the training
and optimization strategies proposed (i.e. MTL, AV-Mixup) in
REPTAR can be seen as an alternative, more data-efficient way
to improve model performance.

4.2.5. Summary of Results

Our proposed model REPTAR achieves competitive perfor-
mance against the previous state of the art, yielding best pub-
lished results in 7 of 9 test configurations. Results are shown in
Table 5 along with a comparison to related works. The results
of Tao et al. [10] were omitted due to train-test contamination.

Our proposed model is able to achieve SOTA performance
on all test configurations of the VoxCeleb1-E and VoxCeleb1-H
test splits, which are considerably larger and targets a broader
demographic compared to the VoxCelebl-O split. Jointly,
VoxCelebl-E and VoxCelebl-H can be used to describe the
REPTAR’s generalizeability and quality of feature extraction.
The results show that REPTAR goes beyond encoding basic
high-level features such as nationality and gender in the repre-
sentation space, and is able to extract features that can be used
to distinguish between even the most similar of speakers.

5. Conclusion

In this paper we explored data-efficient approaches to improv-
ing the robustness of speaker verification systems. Specifically,
we demonstrated how DML representation learning can be en-
hanced, by introducing an auxiliary task trained on inexpensive,
weak labels and measuring the quality of the resulting speaker
representations. We also show how noise in the training set
can be leveraged to improve generalization by introducing the
GE2E-MM loss as well as AV-Mixup, a multimodal data aug-
mentation technique. A comprehensive study of MTL task se-
lection and task weighting strategies is left as future work.
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