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Abstract

While subjective assessments have been the gold standard
for evaluating speech generation, there is a growing need for
objective metrics that are highly correlated with human subjec-
tive judgments due to their cost efficiency. This paper proposes
reference-aware automatic evaluation methods for speech gener-
ation inspired by evaluation metrics in natural language process-
ing. The proposed SpeechBERTScore computes the BERTScore
for self-supervised dense speech features of the generated and
reference speech, which can have different sequential lengths.
We also propose SpeechBLEU and SpeechTokenDistance, which
are computed on speech discrete tokens. The evaluations on syn-
thesized speech show that our method correlates better with hu-
man subjective ratings than mel cepstral distortion and a recent
mean opinion score prediction model. Also, they are effective
in noisy speech evaluation and have cross-lingual applicability.
Index Terms: Speech objective evaluation, speech generation,
self-supervised speech representation, text similarity metrics

1. Introduction

Subjective listening tests have been the gold standard for evaluat-
ing the quality of generated and degraded speech [1,2]. However,
various objective evaluation metrics have also been employed
to reduce time and costs. For example, objective metrics [3, 4]
such as mel cepstral distortion (MCD) [5] are used to com-
pare reference and generated speech. However, these metrics,
which are based on simple acoustic features, can deviate from
human subjective ratings, especially for utterances with differ-
ent acoustic and prosodic characteristics but high naturalness.
Consequently, recent studies have also focused on frameworks
that predict subjective ratings from input speech using neural
models [6-10]. However, the supervised learning based meth-
ods degrade the performance in mismatched conditions, which
limits their practicality [7].

In natural language processing (NLP), automatic evalua-
tion metrics that highly correlate with human subjective judge-
ment [11,12] have been proposed. BLEU [13] measures content
agreement through n-gram overlaps, while BERTScore [14] as-
sesses contextual meaning via language model semantics. Re-
cent speech self-supervised learning (SSL) models can gen-
erate semantic continuous vectors or discrete tokens from
speech [15-17]. Such speech representations can be treated
similarly to text representations, thus enabling applications of
the above NLP metrics to speech. Our goal is to develop evalua-
tion metrics that better match human subjective judgments using
semantic speech representations.

We propose new reference-aware evaluation metrics for
speech generation, which can be used when the generated and
reference speech have different sequence lengths. The proposed

Table 1: Comparison of objective speech evaluation frameworks.

Method Need Need Use SSL Need down
etho reference | labelled data | pretraining | stream training

MCD [5], PESQ [3] Y N N N

SpeechLMScore [20] N N Y Y

MOSNet [6] N Y N Y

UTMOS [10] N Y Y Y

Ours ‘ Y ‘ N ‘ Y ‘ N

SpeechBERTScore calculates the BERTScore for SSL features
of the generated and reference speech, capturing their semantic
congruence. Our SpeechBLEU and SpeechTokenDistance cal-
culate BLEU and character-level distance, respectively, for dis-
crete speech tokens. Our automatic evaluation framework using
NLP metrics has the potential for future extension to include
other metrics such as ROUGE [18] and CIDEr [19]. Table 1
shows the difference between previous evaluation frameworks
and our framework. Unlike traditional metrics based on signal
processing [3, 5], our method uses SSL speech features for a
more semantically informed evaluation. Also, unlike previous
data-driven evaluation frameworks [6, 10, 20], our reference-
aware approach eliminates the need for downstream training,
thus lowering costs and avoiding the problem of mismatched
conditions. The evaluations demonstrate that our method gives
a higher correlation with human ratings than previous automatic
evaluation metrics. Our metrics are available as a standalone
toolkit! and ESPnet [21]. The contributions are as follows:
* We propose novel automatic evaluation methods for speech
generation, inspired by text generation metrics.
¢ The effectiveness of our method is confirmed through the
quality evaluation of synthesized and noisy speech.
* Experiments using English and Chinese datasets demonstrate
high cross-lingual applicability.
¢ Various ablation studies were conducted to investigate the
effect of layer selection, token vocabulary size, etc.

2. Method

In this section, we describe the proposed reference-aware ob-
jective metrics. SpeechBERTScore (§ 2.1) is defined for SSL
speech features, while SpeechBLEU (§ 2.2) and SpeechTok-
enDistance (§ 2.3) are defined for discrete tokens.

2.1. SpeechBERTScore

BERTScore [14] is a widely used automatic evaluation method
for text generation. In BERTScore, the similarity between the
generated text and the reference text is calculated based on the
semantic BERT [22] embeddings corresponding to each text

1https ://github.com/Takaaki-Saeki/DiscreteSpeechMetrics
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Figure 1: Proposed speech evaluation metrics.  Speech-

BERTScore is computed with dense SSL speech features. Quan-
tizer is used for SpeechBLEU and SpeechTokenDistance. Z and
Z are SSL features. U and U are speech discrete tokens.

token. In this study, we propose SpeechBERTScore, which em-
ploys BERTScore as an evaluation metric for speech generation.
SpeechBERTScore calculates the BERTScore for SSL feature
sequences from both generated and reference speech, capturing
their semantic congruence.

Let X = (% € Rt = 1,-++ , Tgen) and X = (x; € R|t =
1,---,Tf) denote the generated and reference speech wave-
forms, respectively. Here, the waveform lengths Tgen and Tief
can be different. Let Z = (Zn € RD|n = 1,-++, Ngen) and
Z=(zp €RP|n=1,---, Nyp) denote the speech SSL features
obtained from X and X, respectively, as follows.

Z = Encoder(X: ), Z = Encoder(X;0), (1)

where 6 denotes model parameters of a pretrained encoder
model. Ngen and Nyt are uniquely determined by Tyen and Tref
respectively, depending on the subsampling rate of the encoder.
Asin § 3.1.3, we use encoder models pretrained by SSL [15,16].

While the original BERTScore defines precision, recall and
F1-score, we use the precision as we found that it performed
the best in our preliminary experiment. Then the Speech-
BERTScore is defined on the semantic features obtained by
Eq. (1) as:

Ngen

Z max cos(Z;,2;)
< J

i=1

SpeechBERTScore =

(@)

gen
where cos(-) is the cosine similarity between two features.

2.2. SpeechBLEU

BLEU [13], which computes a score based on the precision
of matching n-grams, is a common metric for evaluating the
quality of machine-translated text against human translations.
In the proposed SpeechBLEU, BLEU is calculated for discrete
speech tokens to evaluate the quality of generated speech against
reference speech.

Let U= (i, € VIn=1,"+ ,Ngen) and U = (up € V|n =
1,---, Nyg) denote the discrete unit sequences obtained from Z
and Z (Eq. (1)), respectively. Here V denotes the vocabulary of
discrete tokens, with the vocabulary size K. Using an external
quantizer, the discrete units can be obtained as follows.

U = Quantizer(Z; ¢), U = Quantizer(Z; ¢), 3)

where ¢ is the parameters of the quantizer. We use a k-means
algorithm [23] for the quantizer. Then the SpeechBLEU is
defined on discrete tokens obtained by Eq. (3) as follows:

SpeechBLEU = BLEU (U, U). 4)

We use the uniform weight to aggregate the BLEU scores for
each n-gram, where the maximum # is denoted as G.
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2.3. SpeechTokenDistance

In this study, we evaluate generated speech by calculating such
token-level distances on speech discrete token sequences (re-
ferred to as SpeechTokenDistance). While the metrics de-
scribed in § 2.1 and 2.2 could capture long-contextual linguistic
structure, SpeechTokenDistance focuses on a token-level string
matching. SpeechBERTScore and SpeechBLEU are applica-
ble even with different order relations between reference and
generated speech features, while SpeechTokenDistance assumes
matching order relations. While various token-level distance
measures have been proposed, we explore the representative
Levenshtein distance [24] and Jaro-Winkler distance [25].

The Levenshtein distance calculates the minimum number
of single-token edits required to change one text into another.
In the Jaro-Winkler distance, the Jaro distance [26] calculates
similarity based on the number and order of shared tokens, while
the Winkler extension [25] gives more weight to prefixes. The
SpeechTokenDistance is computed on discrete tokens, which are
obtained by Eq. (3), as follows:

SpeechTokenDistance = DistanceMeasure(U, U).  (5)

3. Experimental evaluations
3.1. Experimental settings
3.1.1. Evaluation criteria

We evaluated the correlation of each metric and the human sub-
jective ratings using both the linear correlation coefficient (LCC)
and Spearman’s rank correlation coefficient (SRCC). Reference-
aware metrics were computed by using both generated and refer-
ence speech, while reference-free metrics were computed only
using generated speech. Both utterance-level and system-level
metrics were used to evaluate synthesized speech, while only
uttreance-level metrics were evaluated for noisy speech. Note
that alower MCD indicates better results, while a higher Speech-
BERTScore is preferable. Therefore, we used the absolute LCC
and SRCC values in our evaluation.

3.1.2. Dataset

We used three types of evaluation datasets, where the sampling
rate was set to 16 kHz. We used the SOMOS dataset [27]
for the evaluation of English synthesized speech. It contains
LJSpeech [28] voices synthesized by 200 different text-to-speech
(TTS) acoustic models and the LPCNet [29] vocoder, along with
the corresponding ratings. Since our evaluation requires refer-
ence speech, we used only the LJSpeech domain and employed
the SOMOS-clean subset, which applies quality filtering to the
ratings. Consequently, the dataset included 1000 synthetic utter-
ances, their corresponding ratings and natural speech utterances.

To investigate the cross-lingual applicability of our method,
we evaluated Chinese synthesized speech. We used the Blizzard
Challenge 2019 (BC2019) [30] subset of the BVCC dataset [31],
which provides 1300 synthesised speech samples, along with
their corresponding ratings and natural speech utterances.

We also used the NISQA_VAL_SINM subset of the NISQA
Corpus [8] for the evaluation of noisy speech. It has 2500 noisy
speech utterances generated with various distortions, along with
their corresponding ratings and clean speech utterances.

3.1.3. Self-supervised pretrained models

In the evaluation of SpeechBERTScore in § 2.1, we ex-
plored multiple SSL models including Wav2vec 2.0 [15], Hu-



Table 2: Main results on synthetic speech (SOMOS).

‘ Utterance-level System-level

LCC SRCC | LCC SRCC
Traditional reference-aware metrics
MCD [5] 0356  0.330 | 0.541 0.518
Log FO RMSE 0.050 0.057 | 0.116 0.123
Reference-free metrics, Unsupervised
SpeechLMScore [20] ‘ 0.164  0.127 ‘ 0.268  0.246
Reference-free metrics, Supervised
UTMOS [10] ‘ 0.363  0.340 ‘ 0.537  0.575
Proposed (Reference-aware metrics, Unsupervised)
SpeechBERTScore 0.581 0.563 | 0.781  0.760
SpeechBLEU (G = 2) 0.427 0423 | 0.680 0.659
SpeechTokenDistance (Levenshtein) 0.247 0210 | 0414 0.362
SpeechTokenDistance (Jaro-Winkler) | 0.407  0.427 | 0.663  0.681

BERT [16], WavLM [17], and Encodec [32]. We used models
available in fairseq [33]: Wav2vec 2.0 Base (wav2vec2-base),
Wav2vec 2.0 Large (wav2vec2-large), HuBERT Base
(hubert-base) and HuBERT Large (hubert-large). We
also used WavLM models available in the official repository?:
WavLM Base (wavlm-base), WavLM Base+ (wavlm-base+)
and WavLM Large (wavlm-large). For Encodec (encodec)S,
continuous features before the residual vector quantization lay-
ers were employed. In the evaluations except for § 3.4, we report
results with the best-performing layer.

To evaluate Chinese synthetic speech described in
§ 3.1.2, we used published models*:  Wav2vec 2.0
Base (wav2vec2-base-cmn) and Wav2vec 2.0 Large
(wav2vec2-large-cmn), HuBERT Base (hubert-base-cmn)
and HuBERT Large (hubert-large-cmn), as well as multi-
lingual XLSR models [34] trained on 53 (x1sr-53) and 128
languages (x1sr-128) available in fairseq.

For the evaluation of SpeechBLEU and SpeechTokenDis-
tance, we transformed the hubert-base features into discrete
tokens using a k-means model trained on LibriSpeech 960h [35],
comparing different vocabulary sizes K. In the evaluations ex-
cept for § 3.4, we report results with the best-performing layer.

3.1.4. Baselines

To evaluate the synthesized speech, we used MCD [5] and log
FO root mean squared error (RMSE), common reference-aware
metrics in speech synthesis, where we used evaluation scripts
in ESPnet2-TTS [21,36]. We used SpeechLMScore [20] as
a reference-free unsupervised method, using a published pre-
trained model® trained on LibriSpeech 960h [35]. We used the
default model (50_3 setting in the paper) with a token vocabulary
of 50 using the 3rd layer features. As areference-free supervised
method, we used a UTMOS [10] strong learner, trained on the
BVCC dataset, which was one of the top performing models in
the VoiceMOS Challenge 2022 [37]. Note that this is an out-of-
domain prediction setting, which resulted in a lower correlation
than the in-domain prediction in the SOMOS paper [27].

For the evaluation of noisy speech, we used popular
reference-aware metrics such as Perceptual evaluation of speech
quality (PESQ) [3], a short-time objective intelligibility mea-
sure (STOI) [4], extended STOI (ESTOI) [38] and signal-to-
distortion ratio (SDR). We also used the SpeechL.MScore [20]

thtps
3https
4https
5https

://github.com/microsoft/unilm/tree/master/wavlm
://github.com/facebookresearch/encodec
://github.com/TencentGameMate/chinese_speech_pretrain
://github.com/soumimaiti/speechlmscore_tool
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Table 3: Main results on noisy speech (NISQA Corpus). Sp-
TokDis denotes SpeechTokenDistance defined in § 2.3. Leven.
and J.-W. denote Levenshtein and Jaro-Winkler, respectively.

Aligned ref. 0.99x ref. 1.01x ref.

LCC SRCC | LCC SRCC | LCC SRCC
Traditional reference-aware metrics
PESQ 0.841 0.840 | 0.678 0.667 | 0.686 0.673
STOI 0.741  0.825 | 0.268 0.251 | 0.348  0.337
ESTOI 0.764 0826 | 0.369 0.339 | 0.506 0.489
SDR 0346 0.741 | 0.126 0.112 | 0.289  0.264
Reference-free metrics, Unsupervised
SpeechLMScore | 0583 0.583 | 0.583 0.583 | 0.583 0.583
Reference-free metrics, Supervised
DNSMOS (BAK) 0.542 0567 | 0.542 0.567 | 0.542 0.567
DNSMOS (SIG) 0.595 0.642 | 0.595 0.642 | 0.595 0.642
DNSMOS (OVRL) 0.674 0.697 | 0.674 0.697 | 0.674 0.697
Proposed (Reference-aware metrics, Unsupervised)
SpeechBERTScore 0.824  0.868 | 0.738 0.793 | 0.747  0.801
SpeechBLEU 0.821 0.827 | 0.747 0.738 | 0.754 0.744
SpeechTokDis (Leven.) | 0.762  0.800 | 0.633  0.637 | 0.637 0.644
SpeechTokDis (J.-W.) 0.778 0777 | 0.707  0.729 | 0.723  0.732

model, which is used to evaluate synthesized speech. We used
a pretrained DNSMOS model [9] as a reference-free supervised
model, which includes three metrics: signal quality (SIG), back-
ground quality (BAK) and overall quality (OVRL).

3.2. Main results

We first conducted evaluations on English synthetic speech as
in § 3.1.2. For SpeechBERTScore, we used the wavlm-large
model. We also used SpeechBLEU with no token repetition,
K = 200 and the G = 2 setting, while we used SpeechTok-
enDistance with token repetition and K = 200. Table 2 lists
the results. Our metrics, SpeechBERTScore, SpeechBLEU, and
SpeechTokenDistance (Jaro-Winkler), outperformed traditional
reference-aware metrics in all criteria. They also showed higher
correlations than the unsupervised SpeechLMScore and the su-
pervised UTMOS. There was no overlap in the 95% confidence
intervals between the proposed SpeechBERTScore and previ-
ous metrics for both the utterance-level and system-level scores.
These results highlight the effectiveness of our metrics in better
aligning with human subjective ratings, with SpeechBERTScore
exhibiting the highest correlation.

For noisy speech evaluations described in § 3.1.2, we used
the same configurations in the proposed methods as for the syn-
thetic speech evaluations. Note that the original reference and
noisy speech utterances are time aligned. Results of Aligned
ref. in Table 3 reveal that while PESQ had the highest LCC,
our SpeechBERTScore achieved the highest SRCC. Speech-
BERTScore and SpeechBLEU outperformed other methods® in
both LCC and SRCC, except for PESQ. While signal-processing-
based methods exhibited high performance in Aligned ref., our
method can also be used under conditions where the reference
and noisy speech utterances are not time-aligned. To simulate
cases where they are not time-aligned, we conducted evaluations
using reference speech utterance that was time-stretched to 0.99
times (0.99x ref.) or 1.01 times (/.0lx ref.). As a result in
Table 3, our SpeechBERTScore and SpeechBLEU were found
to be more robust to unaligned references than PESQ.

3.3. Ablation study of speech-token-based metrics

We conducted an ablation study on the proposed speech-token-
based metrics described in § 2.2 and 2.3. While previous stud-

The low LCC of SDR is presumably due to its wider range of values.



Table 4: Investigation of token repetition and vocabulary for
speech-token-based metrics.

Utterance-level Utterance-level
. SpeechBLEU | SpeechTokenDistance
Repetition | Vocab. (G =2) (Jaro-Winkler)
LCC SRCC | LCC SRCC
K =50 0.341 0325 | 0.284 0.275
w/ rep K =100 | 0.364 0.346 | 0.354 0.356
K =200 | 0407 0.396 | 0.407 0.427
K =50 0.357 0.342 | 0.202 0.202
w/o rep K =100 | 0.386 0.369 | 0.304 0.329
K =200 | 0.427 0.423 | 0.370 0.379
055 P e S I MCD (SRCC)
il S =3 SpeechBERTScore
Yoso \ T (wav2vec2-base)
% N ae SpeechBERTScore
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Figure 2: Analysis of layers in SSL models.

ies [20, 39] have removed the repetition of discrete tokens to
reduce the redundancy and overall sequence length, it can ig-
nore the duration information of speech tokens. We thus com-
pared cases with (w/ rep) and without (w/o rep) speech token
repetition. Following previous work [20], we varied the token
vocabulary size K to 50, 100, and 200. We used G = 2 defined in
§ 2.2, as it gave the best results in our preliminary investigations.

Results in Table 4 indicate higher correlations for both
metrics with increased vocabulary size, highlighting the effec-
tiveness of using tokens with richer speech information. For
SpeechBLEU, w/o0 rep showed better performance, while for
SpeechTokenDistance, w/ rep was more effective. Token dura-
tion may be important for calculating character-level similarity
in SpeechTokenDistance, whereas for SpeechBLEU, removing
token repetition may better capture content similarity.

3.4. Layer-wise analysis

We investigated the effect of Transformer layer features from
SSL models on SpeechBERTScore described in § 2.1. Fig. 2
plots the utterance-level SRCCs using features from different
Transformer layer indices, where a lower index number corre-
sponds to layers closer to the input. As a result, using features
from layers 1 or 2 resulted in lower correlations. In contrast,
layer indices of 3 or higher generally led to larger utterance-level
SRCCs for SpeechBERTScore compared to MCD, suggesting
that higher layers with more semantic information [40] are bene-
ficial for our metrics based on NLP evaluation metrics. Notably,
the SSL models except for hubert-base had the beneficial
property of being highly robust to layer selection, indicating
that layers beyond the 7th can be selected randomly.

3.5. Model-wise analysis

In evaluating English synthetic speech, we compared differ-
ent SSL models mentioned in § 3.1.3, with results in Table 5.
First, encodec underperformed in all metrics, indicating the
importance of semantic over acoustic information for Speech-
BERTScore. Among other models, larger models generally
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Table 5: Model-wise analysis for SOMOS (English).

SOMOS (English)

Utterance-level System-level

LCC SRCC | LCC SRCC
Traditional reference-aware metrics
MCD [5] \ 0.356  0.330 \ 0.541 0.518
Proposed reference-aware metrics (SpeechBERTScore)
encodec 0.087 0.074 | 0.158 0.144
wav2vec2-base 0.560 0.539 | 0.776  0.745
wav2vec2-large | 0.566 0.547 | 0.770 0.744
hubert-base 0.564 0.545 | 0.775 0.740
hubert-large 0.563 0.548 | 0.766  0.730
wavlm-base 0.559 0.545 | 0.769 0.739
wavlm-base+ 0.566 0.551 | 0.767 0.741
wavlm-large 0.581 0.563 | 0.781 0.760

Table 6: Model-wise analysis for BC2019 (Chinese).

BC2019 (Chinese)
Utterance-level ‘ System-level

LCC SRCC | LCC SRCC
Traditional reference-aware metrics
MCD [5] \ 0.156  0.300 \ 0.153  0.362
Proposed reference-aware metrics (SpeechBERTScore)
wav2vec2-large 0.746  0.644 | 0.834 0.725
hubert-large 0.735 0.682 | 0.867 0.787
wavlm-large 0.748 0.654 | 0.849 0.755
wav2vec2-large-cmn | 0.753 0.684 | 0.856 0.785
hubert-large-cmn 0.781 0.701 | 0.879 0.819
x1lsr-53 0.750 0.706 | 0.904 0.874
x1lsr-128 0.742  0.679 | 0.884  0.889

outperformed the base models; in particular, wavlm-large ex-
celled in all metrics. WavLM’s improved learning for a wider
range of speech tasks due to its extended pretext task highlights
its effectiveness for SpeechBERTScore.

We investigated the cross-lingual applicability of the pro-
posed SpeechBERTScore using the Chinese BC2019 dataset
mentioned in § 3.1.2. This evaluation assessed the robustness
of our method using an English-only SSL model for the evalua-
tion of Chinese synthetic speech. The results in Table 6 reveal
that models trained on datasets including Chinese showed bet-
ter performance than those trained on English speech corpora
only. More importantly, even models trained only on English
corpora outperformed MCD in all metrics, confirming the cross-
lingual applicability. This highlights the utility of our metrics
for low-resource languages that lack their own SSL models.

4. Conclusions

In this paper, we proposed speech evaluation metrics based on
objective text generation metrics, including SpeechBERTScore,
SpeechBLEU and SpeechTokenDistance. Experimental eval-
uations showed that SpeechBERTScore correlates better with
human subjective ratings than traditional reference-aware met-
rics and previous MOS prediction models. Our evaluations also
suggested the cross-lingual applicability, indicating high practi-
cal potential. Future work includes exploring a wider range of
text generation metrics, such as MoverScore [11].
Acknowledgements: Part of this work was supported by JSPS
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