
AR-NLU: A Framework for Enhancing Natural Language Understanding
Model Robustness against ASR Errors

Emmy Phung1∗, Harsh Deshpande1∗, Ahmad Emami1, Kanishk Singh2

1JP Morgan Chase & Co., USA
2Columbia University, USA

{emmy.phung, harshsaiprasad.deshpande, ahmad.emami}@jpmchase.com
ks4038@columbia.edu

Abstract
A major challenge with pipeline spoken language understand-
ing systems is that errors in the upstream automatic speech
recognition (ASR) engine adversely impact downstream natural
language understanding (NLU) models. To address this chal-
lenge, we propose an ASR-Robust NLU (AR-NLU) framework
that extends a pre-existing NLU model by training it simulta-
neously on two input streams: human generated or gold tran-
scripts and noisy ASR transcripts. We apply contrastive learn-
ing to make the model learn the same representations and pre-
dictions for both gold and ASR inputs, thereby enhancing its
robustness against ASR noises. To demonstrate the effective-
ness of this framework, we present two AR-NLU models: a
Robust Intent DEtection (RIDE) and ASR-Robust BI-encoder
for NameD Entity Recognition (AR-BINDER). Experimental
results show that our proposed AR-NLU framework is applica-
ble to various NLU models and significantly outperforms the
original models in both sequence and token classification tasks.
Index Terms: spoken language understanding, ASR error ro-
bustness, contrastive learning

1. Introduction
There are two common approaches to extract downstream an-
alytics from speech, such as intent detection or named entity
recognition (NER): one is an end-to-end (E2E) spoken language
understanding (SLU) system and the other is a pipeline SLU
system. An E2E SLU system directly maps speech signal in-
puts to SLU outputs [1, 2]. A pipeline SLU system consists of
two sub-systems: an ASR engine that transforms speech audio
signals to text and an NLU model that extracts intents or entities
from text transcripts. While recent research in SLU shows more
focus and advancements in E2E SLU [3], this system presents
some challenges. First, training an E2E SLU system requires
a substantial amount of speech data with task-specific labels
(i.e. intent and entity labels), which is expensive to annotate.
In contrast, in a pipeline system, one can leverage existing ASR
and NLU models that are pre-trained on much larger datasets
and fine-tune them for a specific task, which often requires less
data. Second, due to privacy concerns, there are instances where
the audio is unavailable for system design, leaving only the
anonymized ASR transcripts as accessible input data to down-
stream NLU models [4]. Pipeline SLU allows ASR and NLU
components to be developed and deployed separately for such
cases. Because of these advantages, pipeline SLU remains a
practical approach.

This decoupled design, however, encounters a critical prob-
lem: ASR transcription errors can adversely impact NLU mod-
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els that are pre-trained on formal text documents [5]. Prior ap-
proaches to improve ASR transcription quality include n-best
re-ranking [6], lattice re-scoring [7, 8], and ASR-robust repre-
sentation learning [5, 9]. There have been limited research stud-
ies that focus on improving the downstream NLU models only.
One such study improves model performance on noisy ASR text
by training the NLU model on both gold and ASR text inputs
and forcing the final layer to generate similar outputs for each
input [10].

In this paper, we propose an ASR-Robust NLU (AR-
NLU) training framework that enhances NLU model robust-
ness against ASR transcription errors. This framework holds
promise for multiple downstream tasks, including sequence and
token classification. Our proposed framework extends the work
in [10] by first training the text encoder to learn the same repre-
sentations for both gold and ASR inputs, via contrastive learn-
ing, then forcing the classification layer to generate similar out-
puts for each input. We demonstrate the use of this training
framework in two SLU tasks with a different base model for
each: BERT [11] for intent detection, a sentence classification
task, and BINDER [12] for NER, a token classification task.
Our key contributions include 1) the ASR-Robust NLU training
framework, which is applicable to multiple downstream SLU
sequence and token classification tasks, and operates without
the need for audio inputs at inference, and 2) two ASR-robust
NLU models that demonstrate significant improvements in in-
tent detection and NER tasks.

2. Related Work
2.1. Intent detection

ASR errors can be categorized as deletion, insertion or substi-
tution [13]. Here is an example illustrating how ASR errors af-
fect downstream intent classification task. Suppose the ground-
truth text is “play the weekend”, ASR text could be “the week-
end” (“play” is missing - deletion error) or “pay the weekend”
(“play” is mis-transcribed as “pay” - substitution error). Since
“play” is an important keyword to signal the speaker’s intent in
this case, such an error would challenge an NLU model trained
on regular text data, to predict the play music, the correct in-
tent label.

A typical intent classification model consists of two com-
ponents: 1) a text encoder (for an NLU system) or an acoustic
encoder (for an E2E speech-to-intent system) and 2) a classi-
fier. Recent research has been focused on E2E approach, which
involves utilizing a powerful pre-trained acoustic encoder and
fine-tuning it for this specific task [14]. Other works attempted
to improve the upstream ASR engine by training it simultane-
ously on multiple tasks, such as predicting tokens and durations
[15] or predicting tokens, slots, and intent classes [2]. A novel
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approach to enhance the performance of intent detection model
on noisy ASR transcript involves training a cross-modal system.
This system comprises an acoustic encoder and a text encoder,
designed to project speech and gold transcript inputs of an ut-
terance into a shared latent space, then tying the acoustic em-
bedding and text embedding together via a triplet loss [4, 16].
By doing so, these systems leverage the semantically power-
ful pre-trained text encoder to refine the training of the acoustic
encoder. However, both systems require access to audio at in-
ference, which is not always available. One of the rare attempts
to improve the NLU component of a pipeline intent detection
system is by forcing the classification layer to produce the same
predicted class probability distribution for both gold and ASR
input streams using Kullback-Leibler (KL) divergence loss [10].
Our proposed RIDE architecture, demonstrated in Figure 1, ef-
fectively addresses the limitations of [4, 16] and extends [10]
by: 1) training the text encoder on both gold and ASR text in-
puts, using contrastive learning and 2) training the classifier to
learn the same class probability distributions for both inputs,
using KL divergence loss.

2.2. Named entity recognition

For entity recognition, ASR errors pose a greater challenge be-
cause named entities are less common words that may not exist
in the vocabulary or training data used for ASR, hence they are
especially susceptible to transcription errors. For example, a
company named ”EBRD” could be mis-transcribed as ”IBID”
or a person named ”Oleg” as ”Eg”. Because of these errors,
NER labels annotated on gold transcripts (gold labels) are in-
compatible with ASR transcripts, thereby should not be used
to evaluate NER model predictions on ASR transcripts [16].
In this work, we obtain pseudo-labels on ASR transcripts to
account for such differences, similar to [16]. One difference,
however, is that we use a label-transfer algorithm without hu-
man supervision, which will be explained in Section 4.1.

One approach to expand the robustness of traditional NER
models [17] against ASR errors includes modifying the loss
function used in the CRF layer to account for missing or uncer-
tain token-label pairs in ASR inputs [16]. Recent works, lever-
aging the semantically powerful BERT encoder, replace CRF
with a linear token classification layer [11]. A novel approach in
NER is Bi-Encoder for Named Entity Recognition (BINDER)
which uses the distance between an input text representation
and an entity type representation as a dynamic threshold to pre-
dict entity spans [12]. This work has shown competitive perfor-
mance over traditional NER models on several datasets, so we
decide to use it as our base NER model. Our proposed model,
ASR-Robust BINDER (AR-BINDER) builds upon the original
BINDER model by training the text encoder simultaneously on
both gold and ASR inputs, with the corresponding NER labels,
and applying contrastive learning to tie the embeddings of ASR
and gold text inputs together as well as to tie the embeddings of
entity text coming from both inputs.

3. Model Architecture and Training
Framework

3.1. Robust Intent Detection for ASR (RIDE)

As demonstrated in Figure 1, the proposed RIDE architecture
consists of one text encoder (e.g. BERT) and a classifier with
two fully connected layers. The text encoder takes in two input
streams: a gold transcript and an ASR transcript, and gener-

Figure 1: Architecture of the RIDE model

ates gold and ASR text embeddings. The two embeddings are
tied together in a shared embedding space via a triplet loss [4],
which we refer to as the embedding loss. The generated embed-
dings are subsequently fed into a shared intent classifier, which
predicts an intent probability distribution for each input stream.
Our second component in the RIDE architecture is the KL di-
vergence loss that penalizes the difference between predicted
distributions coming from the gold and ASR input streams, as
inspired by [10].

In summary, RIDE is trained using a combination of the
following three losses:

L = LCE + ϵ1 ∗ LE + ϵ2 ∗ LKL

where LCE is the classification loss, specifically Cross Entropy
(CE) loss, LE denotes the embedding loss, and LKL denotes
the KL divergence loss, described in [10]. ϵ1 and ϵ2 are hyper-
parameters that determine the weights for these loss terms.

3.1.1. Embedding Loss

Our motivation behind this loss term is to force the text en-
coder to generate similar embeddings for both the gold and ASR
text inputs, thereby improving its robustness against ASR noise.
This can be achieved via a triplet loss, which moves the ASR
text embedding of the current example closer to the gold text
embedding of the positive example and away from that of the
negative example. Here is how we form a triplet: for an ut-
terance u, we randomly sample a positive utterance up from
the same intent class, as well as a negative utterance un from
a different intent class. We obtain EASR

u , an embedding from
the ASR transcript of this utterance, and two gold embeddings,
EGOLD

p and EGOLD
n , from up and un, respectively. The triplet

loss is then defined as follows:

LE = max(0, β + d(EASR
u , EGOLD

p )− d(EASR
u , EGOLD

n ))

where, d(A,B) is the cosine distance between two embeddings,
A and B, and β is the margin [16].

3.2. Robust NER for ASR

AR-BINDER extends the architecture of its base model,
BINDER [12], by adding an ASR input stream along with the
original gold text input. The model consists of two text en-
coders: an entity type encoder to produce entity type representa-
tions ([CLS]entity type) based on entity descriptions, and a text
encoder to produce sentence and token representations of the
input text. Note that the sentence representation ([CLS]input)
plays an important role in the original BINDER architecture as
it determines a threshold for entity prediction: a span is pre-
dicted as entity span if the distance between the span represen-
tation and entity type representation is smaller than that between
the input and entity type representation, as shown in Figure 2.
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Figure 2: Architecture of ASR-Robust BINDER

In AR-BINDER, we apply the same BINDER architecture for
both gold and ASR text input streams, to obtain [CLS]GOLD

input

and [CLS]ASR
input, and use the distance between each of them and

[CLS]entity type as the thresholds for entity prediction. There-
fore, our first extension to the BINDER architecture involves
doubling its input streams to accommodate ASR training in-
puts and adding ASR loss terms, denoted LASR

B , for this input
stream (1). Next, we apply embedding loss to tie the embed-
dings of the gold and ASR transcript of the same utterance,
captured by distance 1 in Figure 2 (2). Combining (1) and
(2), we obtain AR-BINDER I. Finally, we extend the same con-
cept to entity span embeddings, training the encoder to learn
the same representation for gold entity spans and ASR pseudo-
labeled entity spans, captured by distance 2 in Figure 2 (3). AR-
BINDER II is our final architecture, comprising of (1), (2), and
(3).

In summary, the training loss for AR-BINDER models for
the NER task is the sum of the following four components.

L = LGOLD
B + LASR

B + ϵ1 ∗ LCLS + ϵ2 ∗ LSpan

where LGOLD
B and LASR

B represent BINDER losses applied on
gold and ASR input streams. LCLS denotes the cosine distance
between the sentence embedding of gold and ASR text inputs
of the same utterance, which we refer to as embedding loss.
LSpan is the embedding loss on the gold and ASR entity span
embeddings. ϵ1 and ϵ2 are hyper-parameter of the AR-BINDER
model, determining the weights of the two added loss terms.

3.2.1. Entity Span Embedding Loss

We first need to align the entities in gold and ASR transcripts
within our training inputs. To obtain these gold and ASR entity
pairs, we develop a label-transfer algorithm, which, as men-
tioned, is used to infer NER spans on ASR transcripts based on
the entities labeled on gold transcripts (see 4.1). Next, we apply
contrastive loss to tie the gold and ASR entity span pairs:

LSpan =
∑

(is,ie,js,je)∈IU

d(Eis,ie , Ejs,je)

where IU represents the set of all gold-ASR entity pairs in ut-
terance U , in which a gold entity i and its paired ASR entity j
are specified by their start and end indices, denoted by (is, ie)
and (js, je). Eis,ie represents the span embeddings of entity i.

Table 1: Test Accuracy on Intent Detection Task

Model Best config (ϵ1,ϵ2) E2E Accuracy

BERTGOLD - 73.52
BERTASR - 75.72
BERTGOLD&ASR - 71.06
Ruan et al [10] - 77.16
RIDE I (1, 0) 77.04
RIDE II (1, 5) 78.05

4. Experiments and results
4.1. Datasets

We perform our experiments on two publicly available datasets:
SLURP for intent detection and SLUE for NER.

SLURP — Spoken Language Understanding Resource
Package [18] is an end-to-end speech-to-intent labeled dataset
consisting of 72K recordings and a set of 91 intent classes such
as play music, calender set and weather query.

SLUE — Spoken Language Understanding Evaluation
dataset [19] provides new transcriptions and annotations on sub-
sets of VoxCeleb and VoxPopuli. We use the VoxPopuli dataset
with NER labels, consisting of 8,500 thousands examples and
17 entity types, including PERSON,DATE,ORG. We use
the normalized text as our gold transcripts.

ASR Transcripts — For both datasets, we use out-of-the-
box AWS Transcribe service1 to generate ASR transcripts. The
word error rate (WER) of transcribing SLURP is 22% and that
of transcribing SLUE is 19%, which are on par with observed
performance for these datasets [18, 19]. We follow the provided
train, validation, and test splits. For NER task, as mentioned,
we develop a label-transfer algorithm to obtain pseudo NER la-
bels on ASR text. We first align our gold and ASR transcripts,
then search for gold entities, which are annotated labels on gold
transcripts, in the aligned ASR text using string matching and
position matching. Our threshold to find an entity match is that
the Levenshtein distance between an entity span found in ASR
text and the original gold entity cannot exceed half the length
of the gold entity. We report our final results on both sets: ASR
pseudo-label (ASRp set) for NER performance evaluation only,
and gold label set (Gold) for end-to-end SLU system evalua-
tion.

4.2. Metrics

Intent detection is a multi-class classification problem. Follow-
ing existing benchmarks on SLURP, we evaluate and bench-
mark our models using overall accuracy.

For NER task, we use the NER evaluation metrics provided
in the SLUE toolkit2. We use micro-average F1 (F1) across all
entities as our primary metrics.

4.3. Results

4.3.1. Intent detection

Table 1 summarizes our experimental results on intent
detection. Our baselines are BERTGOLD , BERTASR,
BERTGOLD&ASR, which are BERT with a linear classifier,
trained on three different datasets: gold transcripts, ASR tran-
scripts, and a combination of both. Note that we do not include

1https://aws.amazon.com/transcribe
2https://github.com/asappresearch/slue-toolkit/tree/main
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Figure 3: Performance of RIDE models at different WERs

Table 2: Test F1 Scores on Named Entity Recognition Task

Best config ASRp Gold
Model (ϵ1,ϵ2) (NER Eval) (E2E Eval)

SLUE baseline3 - - 47.4
BERT - 72.1 69.6
BINDER - 72.2 69.7
AR-BINDER I (40, 0) 73.6 71.0
AR-BINDER II (40, 60) 73.9 71.4

the results from [14, 15], and other benchmarks on SLURP be-
cause they use an E2E approach, which is not comparable to
ours. To compare our work with Ruan et al [10], we replicate
their work by having only KL loss, freezing the embedding loss,
in RIDE but one difference is that we use BERT encoder instead
of Bi-LSTM. The results show that RIDE I (using embeddings
loss only) outperforms the baseline performance on ASR test
set by a significant margin (4.8%), and performs on par with
Ruan et al. RIDE II, where we have both KL divergence and
embedding loss, achieves the best performance.

We assess RIDE’s robustness across various levels of ASR
quality. To achieve this, we create n evaluation sets with dif-
ferent WERs by varying the ratio at which we randomly correct
ASR errors in our test set. We further examine the effective-
ness of our RIDE framework to different base models, including
BERT, RoBERTa [20] and DistillBERT [21]. The baseline we
choose for this comparison is BERT trained on gold transcripts
only. Graph 3 indicates that the performance of the baseline
model deteriorates more quickly and significantly as WER in-
creases, compared to models trained with RIDE framework. At
a WER of 15-20%, the gap between our proposed models and
the baseline is up to 5%. These experiments prove that our AR-
NLU system consistently outperforms the baseline at all levels
of WERs and is most beneficial when ASR quality is poor.

4.3.2. Named entity recognition

For a fair comparison, we juxtapose our model with that from
the SLUE benchmark3 with the most similar architecture: a
pipeline system with ASR WER of 18.4% and using BERT for
NER. For our two base models, BERT and BINDER, we exper-
iment with three different sets of training data: gold transcripts
with gold NER labels, ASR transcripts with pseudo-labels, and

3https://asappresearch.github.io/slue-toolkit/leaderboard v0.2.html

a combined dataset of both. Since our focus is on the NER per-
formance only, not E2E, we select the best model based on its
performance on ASR pseudo-label test set (ASRp) and only re-
port the best results: BERT baseline is achieved when trained on
the combined dataset and BINDER baseline is achieved when
trained on ASR training data. On the E2E metrics, our base
models outperform the SLUE benchmarks by a strong margin,
even when our ASR quality is worse.

Table 2 shows that among three training regimes for AR-
BINDER, AR-BINDER I outperforms existing benchmarks and
both baselines by a strong margin. AR-BINDER II is the best
performer on both ASRp set and E2E evaluation, outperform-
ing the baselines by about 2.5% on both sets. It should be noted
that the reported metric is F1 averaging on a wide set of entity
types, among which, some are less challenging for both ASR
and NER models, such as CARDINAL (i.e. one, two) and OR-
DINAL (i.e. first, second). This may explain why we have ob-
served on-par performances between BERT and BINDER base-
lines. Therefore, to understand the impact of our robust training
regime, we perform analysis on a subset of challenging entities,
where ASR engine is more likely to make mistakes. On two
entity classes with the highest character error rate (CER), PER-
SON and ORG, AR-BINDER II outperforms BERT baseline
model by 7% and BINDER baseline model by 5%. This indi-
cates that our AR-NLU framework yields the greatest benefits
when it comes to challenging entity types.

5. Discussion
Our proposed AR-NLU training framework shows value in the
intent detection task by improving the model’s ability to accu-
rately identify speakers’ intents despite ASR errors. However,
its impact may not be as clear for the NER task because mis-
transcribed entities, despite being correctly identified, may not
be used directly. We believe that recognition of such entities
is beneficial to other downstream analytics. Some could take
advantage of correctly recognized entity types, with some toler-
ance for entity spelling errors. These errors could also be over-
come by some further downstream tasks, such as entity linking
[22]. Furthermore, while the quality of a label-transfer algo-
rithm cannot be as good as as human annotation, the improve-
ments on E2E metrics in Table 2 indicate that our ASR pseudo-
label test results align with the gold test results, and models
benefit from training on ASR pseudo-label sets. This approach
allows us to automatically generate ASR pseudo-labels on tran-
scripts produced by multiple ASR engines.

6. Conclusion
We present AR-NLU, an ASR-Robust NLU training framework
designed to enhance the robustness of NLU models against
ASR errors. The cornerstone of this work lies in training the
model simultaneously on both gold and ASR transcripts and
applying contrastive learning to tie the input text embeddings,
intermediate outputs (e.g. predicted class probability distribu-
tion) or embeddings of final outputs (e.g. entity spans) from
the two input streams. This approach enables the text encoder
and classifier to effectively adapt to ASR noises and perform
robustly on ASR inputs as they do on clean transcripts. Our
framework extends and significantly improves the performance
of BERT-based models for intent detection and BINDER model
for NER. More importantly, experimental results show that our
framework provides the most value when handling poor-quality
ASR transcripts and challenging entity types.
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