Speech Self-Supervised Learning (SSL) has demonstrated considerable efficacy in various downstream tasks. Nevertheless, prevailing self-supervised models often overlook the incorporation of emotion-related prior information, thereby neglecting the potential enhancement of emotion task comprehension through emotion prior knowledge in speech. In this paper, we propose an emotion-aware speech representation learning with intensity knowledge. Specifically, we extract frame-level emotion intensities using an established speech-emotion understanding model. Subsequently, we propose a novel emotional masking strategy (EMS) to incorporate emotion intensities into the masking process. We selected two representative models based on Transformer and CNN, namely MockingJay and Non-autoregressive Predictive Coding (NPC), and conducted experiments on IEMOCAP dataset. Experiments have demonstrated that the representations derived from our proposed method outperform the original model in SER task. We release the source code at https://github.com/AI-S2-Lab/EMS.