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Abstract

Magnetic Resonance Imaging (MRI) allows analyzing speech
production by capturing high-resolution images of the dynamic
processes in the vocal tract. In clinical applications, combining
MRI with synchronized speech recordings leads to improved
patient outcomes, especially if a phonological-based approach
is used for assessment. However, when audio signals are un-
available, the recognition accuracy of sounds is decreased when
using only MRI data. We propose a contrastive learning ap-
proach to improve the detection of phonological classes from
MRI data when acoustic signals are not available at inference
time. We demonstrate that frame-wise recognition of phonolog-
ical classes improves from an f1 of 0.74 to 0.85 when the con-
trastive loss approach is implemented. Furthermore, we show
the utility of our approach in the clinical application of using
such phonological classes to assess speech disorders in patients
with tongue cancer, yielding promising results in the recogni-
tion task.

Index Terms: speech processing, magnetic resonance imaging,
contrastive learning, pathological speech processing, phonolog-
ical analysis, tongue cancer, deep learning.

1. Introduction

The analysis of human speech with Magnetic Resonance Imag-
ing (MRI) provides essential information on the dynamic pro-
cesses involved in speech production, allowing unobtrusive
monitoring of the complete vocal tract during speech produc-
tion. In clinical applications, personalized monitoring and in-
creased speed of speech rehabilitation can be achieved through
targeted phonological therapy i.e., by breaking down spoken
words into their linguistic units [1, 2]. For example, by look-
ing at the position of the speech articulators during spoken lan-
guage production. For example, Figure 1 shows two MRI video
frames displaying the tip and body of the tongue changing the
position when going from one sound to another.

In the case of tongue cancer patients, speech articula-
tion often faces significant challenges due to the physical
and functional changes caused by the tumor and its treat-
ment. The tongue’s mobility, strength, and coordination can
be severely affected, leading to difficulties in producing clear
speech sounds. Articulation problems may manifest as slurred
or unclear speech, with particular trouble in producing conso-
nants that require precise tongue movements [3, 4].
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Figure 1: Example of two MRI video frames displaying the tip
and body of the tongue changing the position when going from
one sound to another.

Surgical interventions for tongue cancer involve removing
the tumor along with nearby tissues through a procedure called
glossectomy. The extent of the glossectomy is determined by
the tumor’s size and involves various adjacent structures within
the tongue. Typically, when a substantial amount of tissue is re-
moved, reconstructive surgery is necessary. In this reconstruc-
tion phase, a flap may be transplanted onto the residual tongue
tissue to restore the tongue’s original volume and shape, aim-
ing to match the patient’s pre-surgical appearance as closely as
possible [5].

While MRI provides detailed visualization of the anatomi-
cal structures involved in speech production, it lacks high tem-
poral resolution. In addition, the acoustic information provided
by audio signals helps to identify certain sounds that are other-
wise more difficult to recognize from the MRI data alone due to
the surrounding structures during coarticulation of sounds [6].
However, having access to reliable acoustic information is not
always possible, mainly because the high noise levels produced
by the machine result in poor speech recording quality; thus, a
specialized non-magnetic microphone (e.g., fiber-optic) is nec-
essary for simultaneous speech-MRI recording or the signal
must go through a denoising process. In this paper, we propose
the use of contrastive learning for the automatic detection of
vowels and consonants grouped into nine phonological classes
from MRI data, aiming to analyze speech disorders in TC pa-
tients. Further details about the proposed approach and main
contributions are provided in the following sections.
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1.1. Related work

To the best of our knowledge, there are no prior works in the lit-
erature that have focused on evaluating speech disorders using
a phonologically targeted approach with MRI data. However,
there are works in the literature that have considered phoneme-
level automatic speech recognition from MRI data. For exam-
ple, Pandey et al. [7] proposed to use a combination of 3D con-
volutional layers, bidirectional recurrent networks with gated
recurrent units, and connectionist temporal classification to gen-
erate text from articulatory motions captured from MRI data,
achieving a phoneme error rate of 40.6% at sentence-level. Van
Leeuwen et al. [8] proposed a deep learning model to classify
27 different phonemes using midsagittal MRI of the vocal tract.
In that work, a convolutional neural network (CNN) was trained
to classify vowels (13 classes), consonants (14 classes), and all
phonemes (27 classes) across 17 subjects, yielding accuracies
of up to 57 % (top-1 accuracy). Saha et al. [9] proposed us-
ing Long-term Recurrent Convolutional Networks models, to
identify different VCV sequences from dynamic shaping of the
vocal tract, where an accuracy of 42% was reported in the pre-
diction of 51 different VCV combinations.

1.2. Contributions of this work

Although MRI has been used for clinical applications pre-
viously and different studies have addressed the automatic
phoneme recognition from MRI data, there are no papers ad-
dressing a phonological-inspired approach to MRI to analyze
speech disorders. The approach consists of computing phono-
logical posterior probabilities from MRI frames, considering
vowels and consonants grouped according to the place of ar-
ticulation. Although this has been used previously in speech
signals, there are no works in the literature addressing the
same approach using medical imaging techniques. Further-
more, we propose to use a contrastive learning-based approach
during training to improve the performance of the phonolog-
ical class recognition from MRI, when synchronized acoustic
speech recordings are available.

2. Datasets

In this work, we considered two MRI datasets to perform our
experiments. The first dataset is the USC 75-Speaker Speech
MRI, which we used to train our model for frame-wise phono-
logical class recognition. The second dataset is an in-house
dataset (cine MRI Tongue Cancer Data), which comprises cine
MRI sequences of TC patients and healthy controls [10]. We
used this dataset to demonstrate the clinical application of our
proposed approach. Both datasets include MRI videos and
speech recordings, however, the speech recordings of the TC
dataset are heavily affected by noise; thus, they are not used in
this work. The image sequences were re-sampled at 26 frames
per second while the speech recordings were at 16 kHz.

2.1. USC 75-Speaker Speech MRI

This is an open-source dataset [11] containing 2D sagittal-view
real-time MRI videos and synchronized speech recordings of
75 subjects performing 21 speech tasks. The data was collected
using a commercial 1.5T MRI scanner with a custom 8-channel
upper airway receiver coil array, with four elements on each
side of the subject’s cheeks for signal reception.
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2.2. Cine MRI Tongue Cancer Data

This is an in-house dataset consisting of 23 controls and 15 TC
patients [12]. The dataset includes speech recordings and cine
MRI sequences captured while the participants were asked to
speak the words “a geese” and “a souk”. The data were acquired
using a Siemens 3.0T TIM Trio system, with a 12-channel head
coil and a 4-channel neck coil utilized for a segmented gradient
echo sequence.

2.3. Phonological Groups

Instead of classifying phonemes individually, we opted to group
vowels and consonants according to the place of articulation.
For this purpose, we used the stimuli related to the VCV
triplets [11], as shown in Table 1, which summarizes the phono-
logical classes considered for automatic recognition and the cor-
responding stimuli. The words Front, Central, and Back, re-
fer to the vowel that is produced in the corresponding VCV
triplet. The frame-wise phonological labels were obtained us-

Table 1: Phonological classes considered in this study.

Class Stimuli
Labial Front ipi, ibi, imi
Labial Central apa, aba, ama
Labial Back upu, ubu, umu

iti, idi, ini, isi, ishi
ata, ada, ana, asa, eese, asha

Alveolar Front
Alveolar Central

Alveolar Back utu, udu, unu, usu, ushu
Velar Front iki, igi

Velar Central aka, aga, agee

Velar Back uku, ugu

ing a forced alignment system on the speech recordings of the
first dataset. Then, an estimation of the frames of interest was
initially performed, and we corrected the generated labels man-
ually when necessary. The tool used for creating the initial la-
bels was the BAS CLARIN web service [13] which provides
a forced alignment tool in a variety of languages. The acous-
tic speech recordings (from the USC 75 dataset) are uploaded
with their corresponding orthographic transcription to obtain
the time stamps of the phonemes represented in SAMPA for-
mat.

3. Methods

Figure 2 summarizes the training procedure of the proposed
contrastive learning approach for the automatic prediction of
phonological classes from MRI data. During training, a single
video frame and its corresponding speech signal are processed
by two different encoders. The image encoder is fine-tuned,
while the parameters of the speech encoder remain unchanged.
Before passing the MRI feature embedding for classification,
we maximize the similarity between the image and speech em-
beddings. For this, we must first project the MRI embedding
into the same dimensions as the audio encoder. Then, a lin-
ear multilayer perceptron with a softmax activation function is
used for the classification. Besides the contrastive loss, we also
compute the cross-entropy loss and add it together to improve
accuracy. During inference, only the MRI is used to predict the
phonological classes.



Table 2: Performance of the phonological class recognizer for the different groups. Base ViT: Baseline ViT model without fine-tuning.
Fine-tuned ViT: Fine-tuned ViT model with USC MRI data. Contrastive ViT: Fine-tuned ViT model and frozen Wav2Vec model.

Base ViT Fine-tuned ViT Contrastive ViT
Class Precision Recall fl-score | Precision Recall fl-score | Precision Recall fl-score
Labial Front 0.82 0.38 0.52 1.00 0.67 0.80 0.96 0.88 0.92
Labial Central 0.69 0.67 0.68 0.81 0.84 0.83 0.91 1.00 0.95
Labial Back 0.42 0.28 0.34 0.63 0.54 0.58 0.78 0.78 0.78
Alveolar Front 0.41 0.19 0.26 0.70 0.56 0.62 0.72 0.74 0.73
Alveolar Central 0.71 0.46 0.56 0.94 0.92 0.93 0.92 0.94 0.93
Alveolar Back 0.18 0.66 0.28 0.69 0.80 0.74 0.98 0.78 0.87
Velar Front 0.82 0.09 0.16 0.68 0.70 0.69 0.78 0.77 0.77
Velar Central 0.40 1.00 0.57 0.69 0.94 0.80 0.89 0.97 0.93
Velar Back 0.00 0.00 0.00 0.70 0.72 0.71 0.81 0.83 0.82
Average 0.50 0.42 0.38 0.76 0.74 0.74 0.86 0.85 0.85
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Figure 2: Overview of our proposed network for our phonolog-
ical class recognizer using a contrastive learning approach

3.1. MRI Encoder Model

The MRI data is processed using a Visual Transformer (ViT)
architecture. Particularly, we used a ViT checkpoint pre-trained
on ~14 million images and 21k classes (ImageNet-21k). Dur-
ing training, we fine-tune all parameters of ViT, leading to bet-
ter results. The ViT model processes the input data, by split-
ting an MRI frame into fixed-size patches (16x16), with each
patch representing a local region of the image. Then, positional
encodings are added to the patch embeddings; thus, providing
spatial information about the patches’ locations within the MRI
frame. Next, the patch embeddings, along with the positional
encodings, serve as input to a transformer encoder with mul-
tiple layers of self-attention mechanisms (learning contextual
information from the entire MRI image) and feed-forward neu-
ral networks. The original model has a classification head for
image identification. In this work, we used the output of the last
hidden state as the feature representation of the MRI data.

3.2. Speech Encoder Model

Acoustic embeddings are obtained from raw speech signals us-
ing Facebook’s Wav2Vec2 base model, which was pre-trained
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and fine-tuned on 960 hours of Librispeech on 16kHz sampled
speech audio. This model consists of three main components:
feature extraction, a context network, and a linear projection to
the output. Temporal convolutions are used in the feature ex-
traction part to convert speech information S into a latent space
representation z1, . . ., 27, which, in this work, is later used for
computing the contrastive loss with the MRI embedding repre-
sentation from ViT. The audio segments are masked and quan-
tized for self-supervised training, and a contextualized repre-
sentation is obtained through a Transformer-based approach.
We only use the last hidden state as acoustic embeddings, while
freezing all parameters of this model i.e., no fine-tuning is
performed on Wav2Vec2.

3.3. Inference & Phonological Features

During inference, only the MRI images are necessary to pre-
dict the phonological class of the processed frame. The pre-
dictions are based on posterior probabilities obtained from the
softmax activation function. These probabilities have been used
previously with speech signals to measure phonological preci-
sion in pathological speech [14, 15] and as a measure for second
language learners [16]. We assume that the phonological class
recognizer is trained with “good spoken” English; thus, the pos-
terior probability indicates how well the system “understands”
certain sounds, i.e., the closer the phonological class probability
to one, the better a speaker pronounces it.

4. Experiments & Results
4.1. Experiment 1: Phonological Class Recognition

We divided the speakers of the USC dataset into training (50

speakers), validation (15 speakers), and test (10 speakers) sets.

The test set was used only during inference. The models

were trained on an NVIDIA RTX A6000 with 48GB during

30 epochs, a learning rate of 10™*, a weight decay of 1072,

and a batch size of 32. The criterion used for optimization was

the AdamW algorithm. Then, we performed three experiments

using the ViT model as a reference:

1. Baseline: The default checkpoint of the ViT model is taken
as it is, without further training.

. Fine-tuned ViT: The classification is performed while all pa-
rameters of the model are free to be trained.

. Contrastive learning: The ViT is fine-tuned and the Wav2Vec
model is used to compute the cosine embedding loss.



The classification results (in the test set) for each one of the
phonological classes are reported in Table 2. Including the
speech and contrastive loss during the training significantly im-
proved the class recognition on all metrics. We verified these
results by calculating the confidence interval (bootstrapping
method) for the best-performing model:

* Contrastive vs baseline: p-value<0.05; 0.568< p < 0.641
* Contrastive vs fine-tuned: p-value<0.05; 0.046< p < 0.098

The results also show that the class with the lowest recognition
accuracy (considering only the contrastive learning approach) is
the alveolar front (e.g. /iti/). By looking at the MRI frames in
Figure 3 we can observe that the position of the tongue to pro-
duce both consonants is similar, except that the place of articu-
lation for /t/ uses the tongue tip and the /k/ uses the body. Such
a “small” difference might be imperceptible for the model; thus,
resulting in lower recognition accuracy.

Consonant /k/ as in /iki/

Consonant /t/ as in /iti/

Figure 3: Example of a person producing the alveolar conso-
nant /t/ and velar /k/

4.2. Experiment 2: Analysis of Phonological Features in
Tongue Cancer Patients

As described in Section 3.3, the output of the phonological class
recognizer (after the softmax) is used to measure the model’s
confidence that an MRI frame belongs to one of nine phonologi-
cal classes. The higher the number (maximum one) the “better”
is the production of the consonant. We computed the phono-
logical posterior probability for the TC patients and controls
described in Section 2 and visualized their phonological class
posteriors in Figure 4. From the radar plot, it can be observed
that the controls had a higher phonological precision than the
TC patients in uttering the velar central and velar back conso-
nants compared to the TC patients. In the radar plot, we can also
observe a tendency from the patient to have a “higher precision”
to produce labial sounds, which does not make sense since there
are no labial sounds in the “a geese” and “a souk” tasks. This is
an artifact that appears to reflect the lip shapes of the vowels. /i/
uses spread lips and /u/ uses rounded lips. Since the lip position
is not specified for the consonants, the lip shape from the vowel
spreads to the neighboring consonants.

5. Discussion and Conclusions

In this paper, we proposed to use a contrastive learning ap-
proach to enhance the recognition of phonological classes in
speech production, especially in the context of clinical applica-
tions for patients with tongue cancer. The study is motivated by
the challenge of accurately recognizing phonological classes (or
phonemes in general), when only MRI data are available, due
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labial front

velar_back labial central

velar_central labial _back

velar_front alveolar_front

alveolar_back alveolar central

—— Control ——— Patient

Figure 4: Phonological articulatory precision (average poste-
rior probabilities) measured in the TC patients and controls

to the poor quality or absence of synchronized acoustic speech
recordings caused by, for instance, the noisy environment of
MRI procedures. The results showed that using a contrastive
learning-based approach significantly improved the accuracy
of phonological class recognition from MRI data, achieving a
frame-wise F1-score of up to 0.85. This approach not only en-
hances the accuracy of phonological class recognition but also
demonstrates potential in clinical settings for assessing speech
disorders in patients with tongue cancer, offering a promising
tool for speech therapy and rehabilitation. The approach in-
volves using two MRI datasets: the USC 75-Speaker Speech
MRI dataset for training the model on frame-wise phonological
class recognition, and an in-house Cine MRI Tongue Cancer
Data set to validate the clinical application of the proposed ap-
proach.

In this paper, we presented two main experiments: In the
first one, we performed phonological class recognition (which
improved through contrastive learning), and, in the second ex-
periment, we computed phonological features in tongue cancer
patients, using the developed model. The results from both ex-
periments validate the potential of using contrastive learning for
improving phonological class recognition from MRI data and
its application in clinical settings for assessing speech disorders
in patients, such as those with tongue cancer. The method’s
ability to accurately predict phonological classes even without
the need for synchronized speech recordings at inference time
could be particularly beneficial in clinical environments where
such recordings may not be available.

Overall, we achieved the goals proposed for this study;
however, there are different points where we can improve our
research. For instance, we relied on the ViT to process the MRI
data without performing any pre-segmentation or detection of
the region of interest, so the model could focus on the specific
motion patterns necessary to recognize the different phonolog-
ical classes more accurately. In future work we will also in-
vestigate the influence of using different MRI modalities on the
obtained results i.e., the data used to train the phonological rec-
ognizer was captured with a completely different setting than
the data used to test the clinical approach. Although the over-
all results seem to support our claims, we need more data to
strengthen our results.
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