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Abstract
Speaker identification (SI) systems are widely used in real-
world scenarios but are vulnerable to attacks from malicious
users. Although existing attacks mainly focus on speech-shaped
inputs, SI models can also be broken by speech-unrelated
background music (BGM) in practical use. In this paper, we
propose a new attack, called BGM Attack (BGMA), that gener-
ates auditorily natural music to deceive SI models. BGMA in-
tegrates a music generation model and a SI model to modify the
music-level semantic features. We propose a linear transform
called differentiable spectrogram reconstruction (DSR) that acts
as a bridge for conveying gradient information between the two
models in BGMA. Our experiments show that BGMA can ef-
fectively break state-of-the-art SI models with generated audi-
torily natural music. The result of this paper highlights the need
for SI models to be robust against attacks from non-speech in-
puts and provides a novel attack method for testing the security
of SI systems.
Index Terms: speaker identification, adversarial attack, back-
ground music attack, music generation

1. Introduction
Speaker identification (SI) systems are widely used in real-
world scenarios, including security-related applications like
biometric authentication and online payment. Nevertheless, en-
suring the reliability of these systems is crucial for their prac-
tical implementation. It is imperative to guarantee that these
systems are resilient to potential threats from malicious attack-
ers.

Traditionally, spoofing attacks, such as replay attacks [1, 2],
voice conversion attacks [3, 4], and speech synthesis attacks [5],
have been employed to fool SI systems. These attacks involve
reusing or imitating the original voiceprint of the target speaker
in order to generate deceptive audio that can deceive both the
model and human listeners.

Recent research has highlighted a significant threat to deep
neural networks (DNNs), which is their vulnerability to ad-
versarial examples [6, 7]. Adversarial examples are inputs
subtly modified with imperceptible perturbations, causing mis-
judgments of a target model. Initially discovered in the im-
age domain, adversarial attacks based on gradient optimiza-
tion methods such as fast gradient sign method (FGSM) [6],
Carlini and Wagner (C&W) attack [8], projected gradient de-
scent (PGD) [9], and Auto Attack [10] have proven to be ef-
fective to attack DNNs. Recent studies have adapted these
methods to speaker verification (SV) and SI models, by ma-
nipulating either the waveform data [11, 12, 13, 14] or acoustic
features [15, 16] with certain constraints. Consequently, this
migration has led to the successful development of acoustic-

designed attacks [17, 18, 19], demonstrating that an attacker
can generate audio that resembles someone else’s voice but can
still be recognized as the target speaker by the SI model.

Although existing attacks mainly focus on speech-shaped
inputs, it is crucial to recognize that SI models can be bro-
ken by any sound in real-world scenarios, even those unre-
lated to human speech. While a few researchers have explored
techniques for attacking voice control systems with speech-
unrelated noise [20, 21], such attacks produce meaningless
noises that might be detected as abnormal. As far as we know,
no speech-unrelated attack has been designed for SI systems.

This paper tries to investigate the feasibility of utilizing
speech-unrelated background music to attack SI systems. In-
stead of inefficiently searching a preexisting music database,
modifying existing music and integrating a music generation
system with an SI model is more controllable. However, a
problem arises in establishing a differentiable integration of the
SI and music generation models. Although Lu et al. [22] use
non-negative least squares (NNLS) optimization for spectro-
gram reconstruction to generate music waveform, their method
lacks differentiability. Alternatively, vocoder networks like
WaveNet [23] and HiFi-GAN [24] can be employed but require
additional training and a more complex computation flow.

In order to address the problem, we propose a novel attack
method called background music attack (BGMA) that generates
auditorily natural music to deceive SI systems. The main con-
tributions of this paper are listed as follows:
• We explore a new threat to deceive SI systems and pro-

pose BGMA, the first method for attacking SI systems with
speech-unrelated music.

• We propose a linear transform called differentiable spectro-
gram reconstruction (DSR) that acts as a bridge for convey-
ing gradient information between the two models in BGMA.
DSR is the first technique that enables backpropagation
through a straightforward linear transform in the spectrogram
reconstruction process.

• Our experiments show that BGMA can effectively break
state-of-the-art (SOTA) SI models and generate auditorily
natural music superior to those generated by migration of the
PGD attack. The results highlight the need for SI models to
be robust against attacks from non-speech inputs.

2. Background
2.1. Speaker Identification Models

Speaker identification is a common task in speaker recogni-
tion that aims to determine if an input utterance belongs to
a group of enrolled speakers. An SI model first extracts the
speaker embedding of an utterance, usually with a pooling strat-
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egy [25, 26, 27, 28, 29, 30]. The extracted embedding is sub-
sequently compared to the embeddings of the enrolled speakers
to acquire similarity scores. There are two main identification
tasks: closed-set identification (CSI) and open-set identifica-
tion (OSI). In CSI, the system assumes that the input utterance
belongs to one of the enrolled speakers. Hence, the SI system
returns the prediction of the speaker with the highest similar-
ity score without offering a rejection option. In contrast, OSI is
considered to be more practical since it allows input from speak-
ers who have not been previously enrolled. A preset similarity
threshold enables the system to reject utterance from unrolled
speakers.

We define the problem formally with the SI system rep-
resented as F . Enrolled speakers, numbered by {1, 2, ...,K},
form a speaker group G. The SI model outputs similarity scores
of an input x with respect to the enrolled speakers in G, denoted
as S(x) = (s1, ..., sK) and (S(x))i = si. In the OSI task,
the SI system identifies the speaker of x with highest similarity
score, while inputs with scores below the preset threshold θ is
rejected. The identification process of OSI is denoted as:

F (x) =




argmax

i∈G
(S(x))i, if max

i∈G
(S(x))i > θ

reject, otherwise
(1)

2.2. Threat Model

We study how an adversarial attacker takes speech-unrelated
music to fool the SI system. The detailed threat model is il-
lustrated below.
Adversary Goals. The attacker aims to deceive the SI system
so that the system misidentifies a music slice as an utterance
from a speaker. In a targeted attack, the crafted adversarial mu-
sic xadv should be identified as a specific enrolled speaker y,
represented as F (xadv) = y. In contrast, the un-targeted attack
aims to craft a music slice that will be identified as any of the
enrolled speakers. Nevertheless, this paper mainly focuses on
the targeted attack, a more challenging problem. Successful tar-
geted attacks require increasing the similarity score S((xadv))y
of the specified speaker. In contrast, an un-targeted attack only
needs to increase the similarity score of any enrolled speaker.
By understanding and addressing the targeted attack, we can
better understand the security vulnerabilities of SI systems.

Suppose M is a set of music slices that are auditorily natu-
ral, the adversary goal is to solve the maximization problem:

argmax
xadv∈M

(S(xadv))y, s.t. (S(xadv))y > θ. (2)

Adversary Knowledge. As the first exploration of the po-
tential new attack, we perform white-box attacks by assuming
full access to the information of the target SI model. With the
known model structure and parameters, we can obtain the gra-
dients of the model.
Adversarial Capabilities. Generating an adversarial example
typically requires imposing a perturbation budget under the L2

or L∞ distance [6]. However, in the case of generating audi-
torily natural music, the attacker is not obligated to mimic an
original input. Hence, the perturbation should not be limited
by a budget. We employ a music generation model to modify
an initial music slice on music-level semantic features. Con-
sequently, the attacker can focus on creating adversarial music
without limited by a perturbation budget.

3. Method
We propose the background music attack (BGMA), which inte-
grates a music generation model with the target SI model. The
attack conveys gradients from the SI model to the music gen-
eration model using our DSR transform. Adversarial music is
generated through iterative gradient descent updates.

3.1. Integrate a Music Generation Model

A straightforward approach to generating adversarial music is
to directly apply the PGD [9] attack to preexisting natural mu-
sic. However, the success of the attack is contingent upon the
perturbation size, which may produce irregular noise that lacks
naturalness. The gradient information guided solely by the SI
model disregards the music’s inherent characteristics.

To address this limitation, we propose to generate music by
modifying the music-level semantic features of a music genera-
tion model in BGMA. Specifically, our music generation model
utilizes the autoencoder structure proposed in [22]. The model
comprises an encoder network E that extracts a semantic con-
tent code cx and a style code rx from the input music x, as well
as a decoder network D that converts the semantic codes into
a Mel-spectrogram X̄ ∈ Rn×T of the newly generated mu-
sic. The autoencoder is trained on a music-style transfer task
based on the Unsupervised Image-to-Image Translation (MU-
NIT) [31] framework. We only modify the content code in
BGMA as we observed a limited impact when altering the style
code in our experimental study.

3.2. Differentiable Spectrogram Reconstruction

Sending the generated music to the SI model necessitates re-
covering waveform data from the output Mel-spectrogram.
A reconstruction of the magnitude spectrogram is required,
which presents an obstacle. The existing work [22] utilizes
NNLS to do the reconstruction, but the method lacks dif-
ferentiability. One potential solution is to transfer the Mel-
spectrogram between the two models directly. However, mu-
sic generation models often require a higher-dimensional Mel-
spectrogram (e.g., 256) to accurately capture music frequencies,
while SI models utilize lower dimensions (e.g., 40 or 80). Al-
ternatively, utilizing a vocoder network necessitates additional
training and involves substantial costs. Hence, we propose
DSR, a straightforward linear transform to reconstruct the mag-
nitude spectrogram from the Mel-spectrogram. DSR addresses
the issue of minimal norm least-square reconstruction by em-
ploying the Moore–Penrose inverse matrix [32] of the Mel-filter
banks, along with a historical spectrogram incorporated at each
optimization step.

The problem is formally defined as follows: given a mag-
nitude spectrogram X ∈ Rm×T , the Mel-spectrogram is ob-
tained as X̄ = MX , where M ∈ Rn×m represents the Mel-
filter bank. Due to the lossy nature of the matrix multiplication
with n < m, recovering X from X̄ and M equals solving the
linear equations that have infinitely many solutions. It is math-
ematically infeasible to get an accurate reconstruction. Instead,
we propose the DSR transform, which can find an approximate
solution in the attack process. During iteration step t, the DSR
transform approximates Xt using historical information from
the preceding step, according to the following theorem:

Theorem 1 Suppose M+ ∈ Rm×n is the Moore-Penrose
inverse matrix of Mel-filter bank M ∈ Rn×m and M =
UΣV tr is the singular value decomposition (SVD) of
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M . Denote V11 ∈ Rn×n,V12 ∈ Rn×(m−n),V21 ∈
R(m−n)×n,V22 ∈ R(m−n)×(m−n) as four partitions s.t.

V =

[
V11 V12

V21 V22

]
. (3)

Then we have

X = M+X̄ +BX, (4)

where

B =

[
V12(V12)

tr V12(V22)
tr

V22(V12)
tr V22(V22)

tr

]
, (5)

and (Vij)
tr is the transpose of Vij . By updating Xt with Xt−1

and X̄t in the iteration step t according to Equation (4), we
propose DSR as:

Xt = M+X̄t +BXt−1. (6)

Utilizing a simple linear transform, DSR establishes a differen-
tiable pathway for conveying gradients between the two models.

3.3. Pipeline of BGM Attack

During the initialization step, a music slice is passed through
the short-time Fourier transform (STFT) and the encoder E to
obtain the initial semantic codes c0 and r0, as well as the ini-
tial phase matrix P0 and magnitude spectrogram X0. Subse-
quently, the decoder D and DSR transform are employed to
update and generate new music:

X̄t = D(ct−1, rt−1),

xt = ISTFT (M+X̄t +BXt−1,P0),
(7)

where ISTFT is the inverse short-time Fourier transform. The
generated music xt is forwarded to the SI model to acquire
the approximated gradients of the identification loss. Then, we
modify the content code by momentum stochastic gradient de-
scent:

gt = β · gt−1 +
∂L(S(xt), y)

∂ct−1
,

ct = ct−1 + η · gt.

(8)

The loss function L calculates the similarity score for the target
speaker y:

L(S(xt), y) = max(−(S(xt))y + c, 0), (9)

where c is a confidence parameter with c ≥ θ. The design
of the loss function is based on the targeted attack in previous
work [9]. The whole pipeline of BGMA is summarized in Al-
gorithm 1.

4. Experiment
4.1. Setup

4.1.1. Datasets

We collect a dataset for the music generation model to train a
style transfer task following [22]. The dataset includes 8000
seconds of both guitar and piano solos. We initialize the gener-
ation of adversarial music using the HD Classical subset of the
MUSAN music dataset [33]. For the SI task, we use TIMIT [34]
and randomly divide it into training, validation, and test sets in
a ratio of 8:1:1. The sampling rate of all waveform data is uni-
formly set to 16 kHz, and down-sampling is required for music
data. Music slices are randomly clipped to 7 seconds, matching
the maximum length of utterances in the TIMIT test set.

Algorithm 1 BGMA

Input:
SI system F , SI Model S, music encoder E and decoder
D, a natural music x, target speaker y;
number of iterations N , step size η, momentum factor β.

Output:
Adversarial music xadv;

1: (c0, r0)← E(x);X0,P0 ← STFT (x); g0 ← 0;
2: for t = 1 to N do
3: Generate music xt by Eq. (7);
4: Send xt to SI system;
5: if F (xt) = y then
6: xadv ← xt;
7: return xadv;
8: end if
9: Get gradients by∇L(S(xt), y);

10: Update gt and ct by Eq. (8);
11: rt ← rt−1;
12: end for
13: xadv ← xN ;
14: return xadv

4.1.2. Music Generation and Victim SI Models

The music autoencoder follows the MUNIT implementa-
tion [22], and audio preprocessing involves applying STFT (size
of 2048, hop-length of 160) and converting the spectrogram to a
256-size Mel-spectrogram. Three SOTA models (X-vector [25],
D-TDNN [26], ECAPA-TDNN (ECAPA) [27]) trained on the
TIMIT training set are selected as victim SI models. Prepro-
cessing for SI models includes a 512-size STFT (hop-length
of 160) and conversion of the spectrogram to a 40-size log
Mel-spectrogram. Cosine similarity is employed to measure
the similarity of speaker embedding as suggested in previous
studies [25, 26, 27]. The optimal similarity threshold is de-
termined by evaluating performance on a validation set using
a random speaker verification task. The threshold is selected
where the false acceptance rate (FAR) equals the false rejection
rate (FRR) [35]. Threshold values (θ) are set to 0.2956, 0.2959,
and 0.2718 for X-vector, D-TDNN, and ECAPA, respectively.
The corresponding Top1 identification accuracy on the test set
is 99.37%, 97.78%, and 99.05%.

4.1.3. Attacker Settings

In the PGD attack, we set ϵ = 0.008 and η = 0.002. In BGMA,
we set η = 0.002. The momentum parameters of the attack
optimization are all set as β = 1 and the confidence parameter
is set as c = 1.The max iteration step for both PGD and BGMA
is fixed as 600.

4.1.4. Evaluation Metrics

The strength and quality of adversarial music are as-
sessed by the attack success rate (ASR) and Mean Opinion
Score (MOS) [22]. ASR quantifies the frequency of successful
attacks. The evaluation is conducted by targeting three random
speakers for each music slice. For MOS evaluation, we collect
the initial natural music, the music produced by BGMA and
PGD, subsequently randomizing their order. We recruit partici-
pants to evaluate music offline, using the same listening equip-
ment. They are asked to analyze whether the music sounds audi-
torily natural or artificially modified. We collect scores ranging
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Figure 1: A parameter search of PGD migration.
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(a) Attack on X-vector

0 100 200 300 400 500 600
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ss

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ta
rg
et
 S
im

ila
rit
y 
Sc

or
e

Loss
Target Similarity Score
Threshold

(b) Attack on D-TDNN
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(c) Attack on ECAPA
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Figure 2: BGMA with the DSR differentiable transform approx-
imating the spectrogram.

from 1 to 5 based on 9000 responses to music slices.

4.2. Explore the PGD Attack

We first explore the direct migration of the PGD attack [9]
bounded by L∞ distance. Since larger perturbation results in
more noticeable noise and lower MOS scores, we conduct a pa-
rameter search to find the minimal perturbation budget ϵ and
proper step size η that achieve the best ASR. Initially, a coarse
search is conducted with η = ϵ/4. The results of ASR with
varying ϵ are presented in Figure 1(a), showing that the optimal
result is obtained at ϵ = 0.0077 approximately. Subsequently,
we set η = 0.002 and conduct a grid search. The results are
presented in Figure 1(b). To compare PGD with BGMA, we
choose ϵ = 0.008 for a balance of the ASR and MOS. Although
the PGD attack effectively deceives the SI model, the generated
music exhibits noise that is perceptible to the human ear1.

4.3. Effectiveness of BGMA

To show the effectiveness of DSR and BGMA, we first target
all enrolled speakers with one initialization music slice as an
example. Figure 2(a), Figure 2(b), and Figure 2(c) present the

1The demos, codes, and datasets are available at https://
github.com/tartarleft/BGMA.

Table 1: Attack random speakers from all music. Nat denotes
natural initialization music in the MUSAN music subsets.

Victim Attack ASR(%) MOS

X-vector
Nat 0 4.5
PGD 100 2.02
BGMA 98.22 3.01

D-TDNN
Nat 0 4.57
PGD 100 1.72
BGMA 96.44 2.97

ECAPA
Nat 0 4.4
PGD 99.86 1.86
BGMA 97.77 3.12

Table 2: ASR (%) of BGMA without/with music augmenta-
tion (MA).

Victim\Training W/O MA MA
X-vector 98.22 98.67
D-TDNN 96.44 91.56
ECAPA 97.77 100

average loss and target similarity score (S(xadv))y of the at-
tacks on the three SOTA SI models. BGMA achieves an ASR
of 100% on all the targets, effectively reducing the loss and in-
creasing the target similarity score throughout the iterations.

We perform attacks with all the initialization music to
demonstrate that BGMA can launch attacks from different start-
ing points. Figure 2(d) shows a histogram of the iteration steps
when targeting one specific speaker by BGMA. The results sug-
gest that most of the iteration steps are below the preset 600-step
limit, except for a few challenging initial points. The results of
ASR and MOS are summarized in Table 1. The PGD attack,
which utilizes precise gradients, is more efficient. Nevertheless,
the adversarial music generated by BGMA achieves comparable
ASR to that of the PGD, while surpassing it in terms of auditory
naturalness, as supported by a significantly higher MOS score
of BGMA. In contrast to PGD, the music generated by BGMA
does not exhibit a white-noise-like sound1.

4.4. Attack SI Models Trained with Music Augmentation

The MUSAN augmentation dataset comprises five subsets of
music. Training SI models with these subsets can be consid-
ered as a defense against adversarial music. Hence, we attack
models trained with MUSAN music subsets as an attack under
defense. The results shown in Table 2 indicate that BGMA is
still effective except for a slightly decreased ASR on D-TDNN.

5. Conclusion
In this paper, we explore a new threat and propose a novel at-
tack called BGMA that can generate speech-unrelated adversar-
ial music to fool SI systems. We also propose a DSR transform
that conveys gradient information in BGMA. The experiments
show that BGMA can effectively break state-of-the-art (SOTA)
SI models and generate auditorily natural music superior to
those generated by migration of the PGD attack.
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