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Abstract
Mapping two modalities, speech and text, into a shared repre-
sentation space, is a research topic of using text-only data to
improve end-to-end automatic speech recognition (ASR) per-
formance in new domains. However, the length of speech rep-
resentation and text representation is inconsistent. Although
the previous method up-samples the text representation to align
with acoustic modality, it may not match the expected ac-
tual duration. In this paper, we proposed novel representa-
tions match strategy through down-sampling acoustic represen-
tation to align with text modality. By introducing a continuous
integrate-and-fire (CIF) module generating acoustic represen-
tations consistent with token length, our ASR model can learn
unified representations from both modalities better, allowing for
domain adaptation using text-only data of the target domain.
Experiment results of new domain data demonstrate the effec-
tiveness of the proposed method.
Index Terms: Speech Recognition, Text-Only, Continuous In-
tegrate and Fire, Domain Adaption

1. Introduction
Automatic speech recognition (ASR) is a technology that con-
verts audio into text. In recent years, end-to-end (E2E) ASR has
attracted much attention and made great progress. E2E ASR can
convert audio to text using a single network model, simplifying
the training and inference process. There are three main types of
E2E ASR models: connectionist temporal classification (CTC)
[1], recurrent neural network transducer (RNN-T) [2, 3], and
attention-based encoder-decoder (AED) [4, 5]. Training with a
large number of labeled data, the E2E ASR model has achieved
excellent results. However, the performance still has a serious
decline in new domains. While the E2E ASR model requires
paired audio-text for training, it is expensive to acquire high-
quality paired labeled data for new domains.

Even more, due to the training paradigm with paired audio-
text data, it is difficult for E2E ASR to directly use text-
only data for domain adaptation like the traditional hidden
Markov model (HMM)-deep neural network (DNN) hybrid
speech recognition model.

Considering that the acquisition of unpaired text is rela-
tively more convenient and the amount of text data is large,
many studies attempted to leverage text-only data to adapt the
E2E ASR model in new domains. A common approach is to use
an external language model. This external language model uses
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a large amount of new domain unpaired text for training and
fuses the E2E ASR model through the method of shallow fusion
[6] or rescoring [7], to improve the recognition performance in
the new domains. Another approach is to generate audio from
large amounts of text in the new domains through a text-to-
speech (TTS) synthesis model [8, 9], thus forming paired audio-
text data that can be used for training E2E ASR models. How-
ever, this approach requires a reliable multi-speaker TTS model
and the high computational cost of generating speech. Even
worse, it still exists a mismatch between real and synthetic au-
dio, which will affect the performance of speech recognition.

An alternative approach focuses on mapping the two
modalities, speech and text, into shared representation spaces so
that E2E ASR can be trained using paired audio-text or unpaired
text [10, 11]. The main challenge of matching two modalities is
that the length of speech representation and text representation
is inconsistent, which makes it difficult for a model to learn a
better-shared representation space. Although the previous ap-
proach aims to match the acoustic representation by replicat-
ing each text unit representation several times to increase the
length of text representation or using a duration model to esti-
mate phoneme and word alignments for each word in the tran-
script, it may not match the expected actual durations in practice
[11, 12], which would affect the learning of shared representa-
tion space of two modalities. On the contrary, it will be more
accurate to match the text length by down-sampling the acous-
tic representation [13]. We believe that modal matching with a
more consistent length of representation will get better results.

In this paper, to explore the reasonable schemes of using
text-only data for domain adaptation, we propose a new strat-
egy to learn a shared representation space for the two modal-
ities - speech and text, which can adapt E2E ASR to new do-
mains more easily and effectively with text-only data. To solve
the problem of the inconsistent length of acoustic representa-
tion and text representation, inspired by [13] and [14], we in-
troduce a continuous integrate-and-fire (CIF) module to gen-
erate the acoustic representations consistent with token length.
Furthermore, considering that syllable is more pronunciation-
related than character, which can be more effectively matched
with acoustic representation, and syllable is more robust than
character which can reduce the impact of rare word or long-tail
word, we explore using syllable instead of character to gener-
ate a shared representation similar to acoustic representation.
Together with a transformer-based syllable encoder, our ASR
model can learn unified representations from both modalities
better. Experiment results for out-of-domain data show that the
proposed text-only domain adaptation performs well.
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Figure 1: Proposed architecture of our E2E ASR model to learn unified representation from two modalities of speech and text. Left:
the overall network; Right: the detailed architecture of the Match module

2. Methodology
In this section, we will review the architecture of our proposed
method, which aims to apply a novel scheme to improve the
ability to use text-only data for the E2E ASR model.

2.1. Architecture

Our proposed E2E ASR model is based on the one presented
in WeNet [15], which uses both CTC and Attention-based
Encoder-Decoder (AED) losses during training to speed conver-
gence and increase the AED model’s robustness. As depicted in
Figure 1, the proposed ASR model mainly contains five parts,
Attention-based Shared Encoder, CTC Decoder, CE Decoder,
Attention Decoder and Match Module. The Shared Encoder
mainly consists of the Conformer [16] blocks. The CTC De-
coder and CE Decoder consist of a linear layer and a log soft-
max layer. The Attention Decoder mainly consists of multiple
transformer [17] blocks. The Match Module mainly consists of
a CIF module and a transformer-based Syllable Encoder. Given
that the module structure of CTC Decoder and CE Decoder is
relatively simple, we mainly introduce other modules.

2.1.1. The Shared Encoder

The Shared Encoder consists of a convolution subsampling
layer containing two convolutional layers with stride 2 for
downsampling, a linear projection layer, and a positional en-
coding layer, followed by multiple Conformer encoder layers.
The Shared Encoder transforms a T -length speech feature se-
quence x = (x1, . . . , xT ) to a L-length intermediate represen-
tation h = (h1, . . . , hL), where L ≤ T owing to downsam-
pling.

2.1.2. The Match Module

As depicted in Figure 1, the Match Module mainly consists of
a CIF module and a transformer-based Syllable Encoder. The
CIF module consists of a 1-dimensional convolution layer and
a linear layer to achieve a soft monotonic alignment. The CIF
encodes the Shared Encoder’s outputs h = (h1, . . . , hL) to
predict the corresponding float weights a = (a1, ..., aL) rang-
ing from 0 to 1. We then carry out a weighted sum between h
and a until the accumulated weight reaches a threshold which
means reaching an acoustic boundary and generating a new in-
tegrated embedding. The threshold is recommended to be 1.0

in [13]. In this way, CIF outputs high-level acoustic sequence
c = (c1, ..., ci, ..., cI), which is consistent with the length of
the text representation. On the other hand, a transformer-based
Syllable Encoder takes syllable embedding as inputs and output
text representations. Considering that the acoustic sequence c is
strictly aligned with the text sequence during training, we map
the two modalities into a shared space with a mean absolute
error (MAE) training objective.

2.1.3. The Attention Decoder

The Attention Decoder consists of a positional encoding layer,
multiple transformer decoder layers, and a linear projection
layer. Given c and previously emitted character outputs
y0:i−1 = (y0, . . . , yi−1), the attention decoder predictes the
next character yi.

2.2. The Overall Training Pipeline

In this subsection, we describe the overall modality-matched
training process using available paired speech-text data and the
text-only training process using unpaired text-only data. Our
method aims to utilize a large number of unpaired text data
without modifying the model. To do so, we allow the model
to be trained on either paired audio-text data or unpaired text
data.

2.2.1. Modality Matched Training

To solve the actually expected duration mismatch of text units in
previous approaches, we have changed a perspective to down-
sample the acoustic representation instead of up-sampling text
representation. As shown in Figure 1, speech is first trans-
formed into a long acoustic representation by the Shared En-
coder. Then, in the Match Module, a CIF module down-samples
the long acoustic representation to a relatively short acoustic
representation with the same length as the text representation
generated by the Syllable Encoder. Although we use syllables
as model unit to get a hidden representation, we still use the
word “text representation” to refer to it, because the syllables
come from text through a text2syllable process which mainly
uses an open-source Chinese character to pinyin tool python-
pinyin1.

1https://pypi.org/project/pypinyin/
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2.2.2. Text-only Training

The Attention Decoder in our E2E ASR model is a transformer-
based decoder that mainly consists of a self-attention module,
a cross-attention module, and a feed-forward module. The
self-attention module allows the decoder to model the con-
tent text between token sequences [18]. Therefore, the Atten-
tion Decoder can interpret as an internal language in E2E ASR
[19, 20, 21]. However, the cross-attention module makes the de-
coder dependent on the acoustic encoder output and thus can not
be separately trained on text-only data, which also makes the
internal language model hard to update for domain adaptation.
And the approach of shared representation space of speech and
text would be an effective way to use text-only data, in which
the text representation plays a similar role to acoustic represen-
tation.

After the paired speech-text data training process, the Syl-
lable Encoder can transform syllable embedding to a hidden
representation, which shares a representation space with acous-
tic representation. Therefore, we can utilize several text-only
data to train the E2E ASR model. The detailed process is as
depicted in Figure 2, we first get a hidden representation from
Syllable Encoder instead of CIF to replace the absent acoustic
representation in the text-only process. And then we only train
the Attention Decoder while other module parameters are fixed
to not update. The Attention Decoder is based on transformer
architecture and it does not require changing the original ob-
jective function. Considering that the internal language model
has some parts related to acoustic modeling, it is not a real lan-
guage model. In order to prevent the decoder from affecting the
acoustic modeling part and suppress catastrophic forgetting dur-
ing text-only training, we randomly use audio-text data of the
source domain in training to ensure that the decoder can per-
form ASR tasks when conditioned on audio features [22, 23].
Therefore, in our novel modality-matched schemes, we can im-
plement the text-only training process more simply and effec-
tively.

北京天安门

AED
Loss

Attention
Decoder

Text2Syllable 

Syllable Encoder

bei3 jing1 tian1 an1 men2

Text
Embedding

Figure 2: Overview of text-only training process.

2.3. Loss Function

We used five loss functions to train our model, namely the CTC,
Quantity, CE, AED, and MAE losses, where the CTC, Quantity,
and CE loss just like that in [13]. The types are jointly trained,
as follows:

L = αLCTC + βLQUA + γLCE + λLAED + δLMAE (1)

Where α, β, γ, λ and δ are tunable parameters. In the experi-
ment, we set α and γ to 0.5, and other parameters to 1.

In text-only training, AED loss is the only one used:

Ltext = LAED (2)

3. Experiments
3.1. Datasets

In this paper, we train our proposed E2E ASR on public Man-
darin Aishell-1 [24] datasets. The Aishell-1 corpus consists
of 178 hours of labeled speech collected from 400 speakers.
The content of the datasets covers 5 domains including Fi-
nance, Science and Technology, Sports, Entertainment, and
News. To compare the domain adaptation ability of ASR in
the text domain while minimizing the influence of differences
in the acoustic environment, we chose another public Mandarin
dataset Aishell-2 [25] that has a similar acoustic environment
for sound recording but the corresponding text contents cover
different text domains. The Aishell-2 corpus consists of 1000
hours of labeled speech collected from 1991 speakers. The
content of Aishell-2 correspondent-only domains of voice com-
mands, digital sequence, places of interest, entertainment, fi-
nance, technology, sports, English spellings, and free speaking
without specific topics. Furthermore, we also conducted further
experiments on different domains on the WenetSpeech [26],
which is a multi-domain Mandarin corpus consisting of high-
quality labeled speech but a relatively more complex acoustic
environment than Aishell-1. We use the Aishell-1 training set
for training and the development set for early stopping.

3.2. Experimental Setup

For all experiments, we use the open-source WeNet toolkit [15]
to build our proposed ASR model. And we used the default
values in the WeNet for the main parameters which have been
validated by the WeNet contributor. The input features are 80-
dimensional log Mel-filterbank (FBank) computed on a 25ms
window with a 10ms shift. We use SpecAugment [27] and
speed perturb for data augmentation. We choose 4233 charac-
ters (including 〈blank〉, 〈unk〉, 〈sos/eos〉 labels) as model units
for Aishell-1.

Following the WeNet recipe [15], we construct the base
model using 12 Conformer blocks in the Shared Encoder, 6
transformer blocks in the Attention Decoder and 4 transformer
blocks in the Syllable Encoder. We employ h = 4 parallel atten-
tion heads in both the Conformer block and transformer block.
For every layer, we use dk = dv = dmodel/h = 64, dffn =
2048.

We train the model with Adam Optimizer [17] for at most
240 epochs with 12 batches. And learning rate = 0.002, warm
up = 25000, and gradient clipping at 5.0. Additionally, dur-
ing training, we employ the gradient accumulation method, in
which the gradients are modified every four batches. Moreover,
we employ label smoothing of value ϵls = 0.1 and a dropout
rate of Pdrop = 0.1. We set the weight λ of the CTC branch
during joint training to 0.3. We also train the n-gram language
model with new domains of text-only data follow by the WeNet
recipe. During joint decoding, we set the CTC-weight λ to 0.5.
To avoid overfitting, we averaged the 30 best model parameters
in the development dataset.

4. Results
The performance of the models is evaluated based on character
error rates (CER). Our experimental results are mainly based on
the attention-rescore two-step decoding method.
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4.1. Main Result

Our method is evaluated on the Aishell-1 dataset. We compare
the proposed ASR model with other models in the literature. As
shown in Table 1, the proposed ASR model achieves compara-
ble performance with a series of state-of-the-art approaches.

Table 1: Main results on Aishell-1 (CER)

Model dev test
Espnet Conformer [28] 4.5 4.9
WeNet Conformer [15] - 4.6

Branchformer [29] 4.2 4.4
Blockformer [30] - 4.4

CIF-based model [13] 4.5 4.9
+ CE Decoder 4.2 4.7

+CE Decoder and Match module (Proposed) 4.1 4.5

4.2. Domain Adaption

In order to prove the effectiveness of our text-only method in
domain adaptation, we also compare the results on the Aishell-2
test and dev datasets, which have a similar acoustic environment
with Aishell-1 but cover different text domains. We use the text
data of the Aishell-2 training dataset for text-only training. As
shown in Table 2, after text-only training, the performance of
the ASR model in a new domain is significantly improved. The
LM is trained with Aishell-2 text data from the training set. And
text-only refer to the model after text-only training.

Table 2: Comparison of the performance after text-only domain
adaption on AishellL-2 (CER)

Model Aishell-2 dev Aishell-2 test
Proposed Model 11.7 11.6

+ LM 11.5 11.4
Text-Only 11.2 11.0

In addition, to further illustrate the validity of our approach
in more difficult text domains and more complex acoustic en-
vironments, we conduct further experiments on three domains
of the WenetSpeech dataset. As shown in Table 3, the pro-
posed text-only method can also improve recognition perfor-
mance. However, with the increasing complexity of data, the
recognition performance of the proposed model is poor, and the
performance of text-only is not obvious. Our proposed model
is trained on a relatively small and quiet dataset, and its ability
for acoustic modeling is not strong enough, so the performance
is poor in a dataset with a complex acoustic environment.

Table 3: Comparison of the performance after text-only domain
adaption on WeNetSpeech (CER)

Model audiobook interview drama
Proposed Model 15.0 37.9 56.6

Text-Only 14.2 37.9 56.4

4.3. Effects of the Epoch of Text-Only

We further study the out-of-domain performance changed with
the training epoch. As shown in Figure 3, in the beginning,
with the increase of training epochs, the ASR performance was

significantly improved. When the training epoch reaches nearly
40, the text-only performance will be achieved. This shows that
the text-only method can achieve domain adaptation quickly.

Figure 3: Text-only performance changes with epoch.

4.4. Analysis on Different Model Unit for Text-Only

Furthermore, we also study the performance of the different
model units of character and syllable in our text-only. As shown
in Table 4, using syllables as model unit achieves a better per-
formance than using the character in the proposed model and is
more effective in text-only domain adaptation. On the one hand,
the syllable modeling units are more pronunciation-related than
character, which can be more effectively matched with acoustic
representation. On the other hand, the rare character or long-tail
character may be difficult to fully model in a modality match-
ing.

Table 4: Comparison of the performance of different model unit
in text-only domain adaption on AishellL-2 (CER)

Character Syllable
Model dev / test dev / test

Proposed Model 11.8 / 11.7 11.7 / 11.6
+ LM 11.6 / 11.5 11.5 / 11.4

Text-Only 12.0 / 11.9 11.2 / 11.0

5. Conclusions
In this paper, we proposed a novel representations match mod-
ule through down-sampling acoustic representation to align
with text modality. By introducing a continuous integrate-and-
fire (CIF) module generating acoustic representations consis-
tent with token length and using pronunciation-related model
unit syllable matching acoustic representation effectively, our
ASR model can learn unified representations from both modal-
ities better, allowing for domain adaptation using text-only data
of the target domain. Experimental comparisons for out-of-
domain settings demonstrate that the proposed text-only domain
adaptation achieves a good performance. In the future, we will
further explore the performance of different model units with
large-scale datasets and verify the performance of our method
on the English datasets.
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