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Abstract

The construction of knowledge-based, task-oriented systems for
spoken conversations is a challenging task. Given the spoken di-
alogue history information, a knowledge selection model selects
the appropriate knowledge snippet from an unstructured knowl-
edge base. However, the performance of this model is sensi-
tive to automatic speech recognizer (ASR) recognition errors.
To address this problem, we propose a method called CLKS,
which develops a knowledge selection model that is robust to
ASR recognition errors. This approach involves: 1) To leverage
a wide range of information from various ASR outputs, we em-
ploy the self-attention mechanism to aggregate the representa-
tion of the N-best hypotheses of the dialogue history. 2) We use
the written dialogue representation to guide the aggregated spo-
ken dialogue representation to select the correct knowledge can-
didate through contrastive learning. Experimental results on the
DSTC10 dataset demonstrate the effectiveness of our method.
Index Terms: Contrastive Learning, N-best Aggregation, Spo-
ken Dialogue System, Knowledge Retrieval.

1. Introduction

The speech-based task-oriented dialogue systems are popu-
lar for assisting users with specific tasks through natural and
information-rich conversations. Unlike written language-based
dialogue systems [1, 2, 3, 4], these systems rely heavily on the
performance of automatic speech recognition (ASR) systems
and an external knowledge base to build a meaningful conversa-
tion [5]. Knowledge-based task-oriented spoken dialogue sys-
tems first use an ASR system to transcribe speech into text, and
then a dialogue system to generate an appropriate response by
combining external knowledge and dialogue information.

Most publicly available task-oriented systems mainly focus
on written conversations [6, 7, 8]. However, the characteristics
of written conversations are different from that of practical spo-
ken ones, which contain speaker disfluency and interruptions
phenomena. A dialogue system trained on a written conver-
sation corpus but deployed in a spoken conversation scenario
suffers from enormous performance degradation due to the mis-
match between the written and ASR output transcripts. One of
the main reasons is that recognition errors are inevitable in the
ASR output. Although some previous works have attempted
to develop ASR robust knowledge-based spoken dialogue sys-
tems [5, 9] to mitigate the effects of ASR errors, recognition

* Corresponding authors

This work was supported by National Key R&D Program of China
(No0.2022ZD0162101), Shanghai Science and Technology Committee
(N0.21511101100) and Shanghai Key Laboratory of Digital Media Pro-
cessing and Transmissions (STCSM 22DZ2229005)

725

errors are still high for the knowledge entities which often con-

tain rare words [10, 11] and there is not much training data for

these words, thereby affecting the accuracy of knowledge se-
lection models. Thus, building an ASR error robust knowledge
selection system is an essential but challenging task.

One of the most common lines of works to reduce the im-
pact of recognition errors focuses on utilizing the N-best hy-
potheses of ASR instead of the one-best hypothesis to recover
from ASR recognition errors [12, 13, 14, 15], or using ASR
error detection and correction [16, 17, 18] methods based on a
pre-trained language model (LM) to modify the recognition out-
put. However, these works ignore the link between the written
and corresponding spoken transcripts, which is crucial for im-
proving the robustness of the model to ASR errors. Some works
use knowledge from the written context to create a robust repre-
sentation of the spoken context [19, 20, 21, 22], but rare works
have been investigated in spoken conversation tasks where user
intent is more complicated. Other works focus on using so-
phisticated sampling methods to improve knowledge selection
[23, 24] performance. However, these methods are sensitive to
the expansion of the knowledge base.

Recently, the Track 2 [25] proposed in the Tenth Dialog
System Technology Challenge (DSTC10) aims to incorporate
unstructured external knowledge into a spoken task-oriented di-
alogue system and attracted wide attention. This paper focuses
mainly on the second subtask of DSTC10 Track 2. A contrastive
learning-based robust knowledge selection method (CLKS) us-
ing the N-best hypotheses from ASR output is proposed to nar-
row the gap between the written and spoken representations in
the semantic space and improve the robustness of the model
to ASR errors. Experimental results and ablation studies con-
ducted on the DSTC10 Track 2 dataset validate the effectiveness
and robustness of our proposed method, which outperforms the
DSTC10 Track 2 baseline system by about 9.7% compared to
R@1. In this paper, we contribute to the knowledge selection
task of the spoken dialogue system from two aspects:

* To leverage the information from the various N-best hypothe-
ses output by ASR, we aggregate the representation of the
N-best hypotheses of the spoken dialogue history using a
sentence-level self-attention mechanism.

* We use the sentence-level representation of the written dia-
logue history to guide the aggregated representation of the
spoken dialogue history to select the correct knowledge from
the unstructured knowledge base through contrastive learn-
ing, which further improves the robustness of the model.

2. Methodology

To formalize the task of knowledge selection in spoken task-
oriented conversational systems, we define the written dialogue
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Figure 1: We aggregate ASR N-best hypotheses by a self-attention mechanism to obtain a spoken domain representation. We use cross-
entropy and contrastive loss to fine-tune the model with the sentence-level written and spoken dialogue representation.

context of the ¢-th utterance as Wy = {Wi—ut1, -+ , We—1,
wy } and the knowledge snippets in the external knowledge base
as K = {k1, -, kam}, where u is the size of the dialogue his-
tory window and M is the size of the knowledge base. Follow-
ing [5], we randomly sample C'— 1 knowledge snippets from the
knowledge base as negative candidates. In conjunction with the
ground truth knowledge k4, we use a total of C' knowledge can-
didates for further training of the knowledge selection model.
We use the TTS-ASR pipeline to generate the dialogue context
hypotheses S; = {si_,41, - ,5i_1, st} corresponding to the
spoken version transcripts of W3, where ¢ = 1,2, ..., N repre-
sents the i-th best hypothesis of the ASR outputs. As shown
in Figure 1, the written and ASR transcripts of dialogue history
are concatenated with each knowledge snippet as the written
and spoken input of the model, respectively.

In summary, by augmenting the dialogue data with the
TTS-ASR pipeline and concatenating dialogue history with
knowledge candidates, each written domain training sample in
the original dataset is augmented from C' to (N+1) x C training
samples for model training.

2.1. Dialogue Data Augmentation

To bridge the gap between the manual transcripts and the spo-
ken conversation contexts, we utilize a TTS-ASR pipeline to ob-
tain a spoken version of the conversation transcripts {S;},i =
1,---, N when given the corresponding written one W;.

First, We synthesize the original DSTC9 Track1 [11] train-
ing set into speech using a commercial text-to-speech sys-
tem'. Then the synthesized speech is transcribed into text by
a wave2vec 2.0-based Connectionist Temporal Classification
(CTC) acoustic model [26] trained on 960 hours [27] of Lib-
rispeech dataset and an external language model built using
KenLM [28]. We train this external language model using the
DSTC9 Track]1 training set and MultiWoz2.1 [29] dataset. This
ASR pipeline finally achieved an 18.89% WER on the user ut-
terances in the training data. Some examples of spoken con-
versation utterances generated by our ASR pipeline are shown
in Table 1. The ASR recognition errors are marked with bold
italics. It can be seen that the rare words that appear in the ho-
tel names can easily be misidentified. On the other hand, the
punctuation in the original utterance is omitted. These ASR

Thttps://cloud.google.com/text-to-speech
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recognition noises can confuse the downstream task and affect
the overall system performance.

Table 1: Comparison between written and spoken transcripts.

Written Transcripts Spoken Transcripts

Can I get the address of
the Gonville, please?

can i get the address of
the gonvil please

i need to be in brokborn
by eight o’clock

I need to be in Broxbourne
by 08:00.

Can you give me the postcode
and star rating for Lovell
Lodge and tell me if they

can you give me the postcoat
and star rating for love
lodge and tell me if they

have wifi? have wifi

2.2. ASR N-best Hypotheses Aggregation

As shown in Figure 1, to improve the robustness of the model
to ASR errors, we aggregate the information of the N-best hy-
potheses based on a self-attention mechanism.

Specifically, we first concatenate the written and N-
best ASR hypotheses transcripts of the same dialogue his-
tory with C' different knowledge candidates as model input,
which can be written as written history-knowledge pairs {[W%,
k1], , [Ws, kc]} and spoken history-knowledge pairs {[S7,
Ei],---,[S{, kclYier,... . Then, these two types of history-
knowledge pairs were passed through BERT [30] to obtain
the last hidden states of each input token. Finally, fea-
ture extraction is performed by applying average pooling on
the last hidden states to obtain the sentence-level representa-
tion of the history-knowledge pair, which can be formulated
as Hy = [hw1,hys, - ,hy o] € R and H!
hi;,his,--- ,hic]€ R¥*¢ i e1,---, N, where d is the
dimension of sentence level representation vector.

After feature extraction, the spoken sentence representa-
tion matrix H = [h} ;,hZ,,--- hY;];=1... c € RN that
collected according to the same knowledge candidate k; is ag-
gregated by averaging the representation output using a self-
attention mechanism, which can be formulated as:

[7J 7i\T
fls,j = %softmax (%

) VE < T, (1)



where T e RM*! is all-ones vector and Q, K,V € R%*¢
are the learnable parameters of the model. The aggregated rep-
resentation of the N-best hypotheses of C' history-knowledge
pairs at the level of spoken transcripts can be written as H, =
[fls,l, fls’z, e ,flsyc]. We call this step N-best aggregation.

The written and spoken sentence level representation H.,
and H, are passed through linear layer W € R'™? to ob-
tain classification distributions pw = [Pw,1, Pw,2, " , Pw,c] =
softmax(W H,,) and ps = [ps,1,Ds,2," - , Ps,c] = softmax(
WH s). We use a cross-entropy loss on the classification logits
to guide the network to choose the ground truth knowledge in
C knowledge candidates, which can be written as:

ﬂtvjvE + LgE = —log (pw,q) — log (ps,g) s @)

where g is the index of ground truth knowledge.

2.3. Supervised Contrastive Learning

To improve the knowledge selection capacity of our model, we
propose a contrastive learning-based method to fine-tune the
BERT model to learn the joint representation of the spoken dia-
logue history and the knowledge snippets. In contrastive learn-
ing formulation, we consider the pair of written and spoken
sentence representation (h,, ;, ltlw-) as a positive pair only if
¢ and j are both equal to the index of ground truth knowledge
g. We construct negative samples of representation h,, 4 from
two parts, including in-domain (i.e. written) negative samples
Bi" = {hy,; }iz, and out-domain (i.e. spoken) negative sam-
ples BS* = {hs;},2,. The final negative samples for h., ,
is B, = B J B3"". We can also construct negative samples
B, = B"|J BS"* for h, 4. The supervised contrastive learn-
ing loss can thus be written as Equation 3, where s(-, ) is a co-
sine similarity function and 7 is a temperature hyper-parameter,
the whole process is illustrated in Figure 1.

£ 1(1 es(hw,gyﬁs,g)/f
CL =775 Og s T
2 ZheBw es(hw,g,h)/

es(fls,gvhw,g)/"‘

s(hs,g,h) /77’
2 nen, €M

In this way, we leverage the ‘clean’ sentence-level written di-
alogue history representation to guide the aggregated spoken
domain dialogue history representation to choose the correct
knowledge candidate. As we need to fine-tune the model shown
in Figure 1, the final training loss can be written as follows:

3

+ log

Ly =LEg+ L+ Lor. )

During inference, we use only spoken dialogue history as

model input to select knowledge from the knowledge base using
the fine-tuned model’s representation extraction capacity.

3. Experiments
3.1. Datasets

We use the DSTC10 Track2 dataset and an augmented spo-
ken version of the DSTC9 Trackl dataset. The statistics of
the dataset are shown in Table 3. The training set is a spo-
ken version of the DSTC9 training set, which is generated by
our data augmentation method described in subsection 2.1. The
DSTC10 dataset differs from the spoken DSTC9 dataset in that
the DSTC10 challenge only provides validation and test sets,
and the texts are from the output of an ASR system, the de-
tails of this ASR system can be found in [5]. The knowledge
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base consists of question-answer pairs, which were collected
from frequently asked questions (FAQ) pages and cover four
different domains: Hotel, Restaurant, Train, and Taxi. The doc-
ument of hotels and restaurants are further divided into entities.
The number of snippets in the external knowledge base of the
DSTCI10 dataset is about four times that of the original DSTC9
dataset, totaling 10586 snippets.

3.2. Experimental Setting

In this paper, we focus on the knowledge selection sub-task of
DSTCI10 Track2. To verify the effectiveness of our approach,
we compare CLKS with the following three baseline models.
For a fair comparison, we use our augmented spoken dialogue
data as training input for each baseline method?.

+ DSTC10: DSTC10 Track2 baseline® is an official baseline of
the DSTC10 challenge. We replace the original loss function
with Equation 2 to utilize both written and spoken transcripts.

* Knover: Knover [24] utilizes a multi-scale negatives sample
to strengthen the ability of fine-grained relevance estimation.
To make a fair comparison with our method, we replace the
pre-trained model used in the original paper with BERT and
use the loss function of Equation 2.

* RADGE: RADGE [31] constructs a multi-task learning ar-
chitrave in combination with an entity-recognition model that
enables the model to select knowledge based not only on
knowledge text information but also on domain and entity.

All methods are evaluated using several standard IR metrics
including Recall (R@1 and R@5) and Mean Reciprocal Rank
(MRR@5) [11]. Models are trained with batch size 16 and with
10 epochs on a single RTX 3090 GPU. We use an AdamW op-
timizer with a learning rate of 6.25e-5 and an € of le-8. All
results are measured on the DSTC10 Track?2 test set. The num-
ber of knowledge candidates C' used to train our model is 6, the
number of ASR hypotheses N used for aggregation is 5, and
the temperature 7 in contrastive learning is 0.06. The window
size u is set to 128 tokens.

3.3. Evaluation Results

The performance of the proposed CLKS method shown in Ta-
ble 2 consistently achieves good performance gains on all met-
rics compared to the DSTC10, Knover, and RADGE methods.
CLKS yields an R@1 of 0.6794 which corresponds to a relative
improvement of 9.7% over the DSTC10 baseline system.

Table 2: The main results of the proposed CLKS method. CLKS
outperforms other baselines on all metrics and achieves an
R@ [ improvement of 9.7% over the DSTC10 baseline.

SYSTEM MRR@5 R@l R@5

Knover [24] 0.6522  0.5652 0.7862
DSTC10 [11] 0.7040  0.6193  0.8346
RADGE [31] 0.7137 0.6589  0.7906
CLKS (ours) 0.7461 0.6794 0.8419
w/o CL 0.7135 0.6442 0.8214
w/o (CL and N-best Agg.)  0.7040  0.6193  0.8346

The sampling-based method Knover does not perform well
on the test set of DSTC10 Track 2 when we train Knover using

2Since Knover and RADGE didn’t release their source code, we re-
implement their method based on our augmented dialogue data.
3https://github.com/alexa/alexa-with-dstc10-track2-dataset



Table 3: Dataset statistics: Spoken DSTC9 is the data augmentation version of the original dataset using the data augmentation method
described in subsection 2.1. The DSTCI0 dataset is provided by the DSTC10 challenge.

Datasets Split  Modality Dialogs Knowledge Domains Knowledge Entities = Knowledge Snippets
Spoken DSTC9  Train  Written 71348 4 143 2900
Val 263 3 855 10586
DSTC10 dataset Tost Spoken 1088 3 355 10586

our spoken DSTCY dataset (as mentioned above, the DSTC10
dataset does not provide a training set). The main reason may
come from the large discrepancy between the knowledge base
of DSTC9 and DSTC10. The sampling method proposed by
Knover may bias the model towards the knowledge base of
DSTC9 and affect the generalization ability of the model. The
comparison between Knover and CLKS shows the robustness
of CLKS to the scale variations of the knowledge base.

3.4. Ablation Study

The effect of the various components of our proposed method
on the final result is shown in the last three rows of Table 2. The
result of CLKS without CL (i.e. w/o CL) shows that perfor-
mance in R@1 deteriorates by about 5.2% when no contrastive
learning is used for robust representation learning. The result
of CLKS without CL and N-best Agg. (i.e. w/o CL and N-best
Agg.) shows that performance in R@1 deteriorates by about
8.8% compared to CLKS when we use only one-best hypothe-
ses and no contrastive learning.

Table 4: Ablation study on the different number of aggregated
hypotheses. We set the number of knowledge candidates to 6.
The performance increase when we aggregate more hypotheses.

Aggregated N-best MRR@5 R@1 R@5
1 0.7025  0.6325 0.8097
3 0.7268  0.6545 0.8316
5 0.7461  0.6794 0.8419

In the second experiment, we vary the number of N-best
hypotheses to investigate the performance of the CLKS method.
As can be seen in Table 4, the more N-best hypotheses aggre-
gated, the more robust the knowledge selection model is to ASR
errors, leading to better performance.

Table 5: Ablation study on the different numbers of knowledge
candidates (one ground truth + the number of negative sam-
ples). We fix the number of N-best hypotheses to aggregate at 5.

Knowledge candidates MRR@5 R@1 R@5
2 (1+1) 0.7069  0.6193 0.8258
4 (1+3) 0.7260  0.6559 0.8360
6 (145) 0.7461  0.6794 0.8419

The results in Table 5 show that the performance of the
CLKS method gradually improves as the number of input
knowledge candidates increases when the number of N-best hy-
potheses to aggregate is fixed at 5.

To demonstrate the effectiveness of our proposed method
with various pre-trained models, we combine our representa-
tion learning method with DeBERTa [32] and ELECTRA [33].
The results are shown in Table 6. We use the ‘base’ size of
each pre-trained model. ‘Baseline’ means that we do not use
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contrastive learning and N-best aggregation for model training,
and ‘CLKS’ means that we use CLKS method for model fine-
tuning. As can be seen in Table 6, the performance of ‘CLKS’
consistently outperforms that of ‘Baseline’ on all metrics, which
demonstrates the effectiveness and generalization of CLKS for
different pre-trained models.

Table 6: Ablation study of compatibility with the different pre-
trained model of CLKS.

Pre-trained model MRR@5 R@1 R@5
BERTI0L %S 0746l 04794 08ald
DBERTa(32 "0’ 07arl  oged7 0402
BLECTRADS 'S o701 0011 0865

For the case study, the knowledge selected by the different
methods for a given dialogue history is shown in Table 7. It
can be seen that the baseline approach is susceptible to similar
FAQs and it selects the wrong restaurant. On the other hand, the
CLKS method can choose the correct knowledge.

Table 7: Case study: knowledge selected by different methods.

Dialogue History

U: uh can i give the address and zip code for dolus in stone
son please
S: sure address is seven five two jackson street zip code nine
four one three three

U: do you know if they offer take-out

Selected Knowledge
DSTC10  Q: Dos Restaurant One Seven offer takout?
baseline A: No, takeout is not offered at One Seven
CLKS Q: Does Delicious Dim Sum offer take-out?”,
A: This restaurant offers take-out.
ORACLE Q: Does Delicious Dim Sum offer take-out?”,

A: This restaurant offers take-out.

4. Conclusions

This paper presents a robust unstructured knowledge selection
method, named CLKS, which introduces an ASR N-best aggre-
gation method and a contrastive learning-based method for bet-
ter knowledge selection of spoken dialogue. Experiments on the
DSTCI10 dataset demonstrate the effectiveness of the proposed
framework and show the potential of the proposed method in
bridging the knowledge selection gap between written and spo-
ken inputs.
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