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Abstract
State-of-the-art Spoken Language Identification (SLI) systems
usually focus on tackling short audio clips, and thus their per-
formance degrade drastically when applied to long-form audio,
such as podcast, which poses peculiar challenges to existing SLI
approaches due to its long duration and diverse content that fre-
quently involves multiple speakers as well as various languages,
topics, and speech styles. In this paper, we propose the first sys-
tem to tackle SLI for long-form audio using podcast data by
training a lightweight, multi-class feedforward neural classifier
using speaker embeddings as input. We demonstrate that our
approach can make inference on long audio input efficiently;
furthermore, our system can handle long audio files with mul-
tiple speakers and can be further extended into utterance-level
inference and code-switching detection, which is currently not
covered by any existing SLI system.
Index Terms: Spoken language identification, long-form au-
dio, podcast, speaker embedding application

1. Introduction
Spoken Language Identification (SLI) is the task of recogniz-
ing spoken languages using audio input only. SLI is an im-
portant step in multilingual speech processing tasks such as au-
tomatic speech recognition (ASR) and speech translation. For
example, Google Cloud’s multilingual Speech-to-Text service1

requires users to submit one primary language code and at most
three alternative language codes (i.e. four languages in total)
and the service uses the language code that produces the best
transcription results. This prerequisite indicates that if one does
not know the language of the audio beforehand or if there are
multiple possible languages, one needs to first perform a man-
ual inspection of the language(s) in the audio before using the
transcription service. Similar to the case for Google Cloud’s
Speech-to-Text service, SLI is critical for many different down-
stream multilingual speech processing tasks [1, 2] so as to re-
move dependency on human labeling or metadata for language
tagging, which restricts the scalability of multilingual systems.
Therefore, an automated SLI approach with high performance
is intrinsic to the success of scaling up multilingual speech pro-
cessing systems.

Long-form audio poses peculiar challenges to existing SLI
systems, which so far have only focused on detecting languages
from short-form, single-speaker, and monolingual audio. Long-
form audio differs significantly from short-form audio, because
as the duration of audio increases, the difficulty of SLI increases

⋆equal contribution; ‡work done during internship at Spotify.
1https://cloud.google.com/speech-to-text/

docs/multiple-languages

exponentially due to data sparsity (e.g. there might be long
pause or music in long-form audio) and complexity (e.g. long-
form audio usually involves multiple speakers as well as diverse
speech content and styles). One typical example of long-form
audio is podcast. As an increasingly popular media format, pod-
cast data has become a major repertoire of speech content: as of
March 2023, there are over 2.5 million podcast shows and more
than 70 million episodes in over 100 different languages [3]
with over 460 million podcast listeners globally [4]. The rich af-
fordance of speech content from podcast not only opens up new
realms for speech content processing and understanding, but
also poses new and unique challenges to existing SLI systems:
heterogeneous by nature, different podcast shows can have very
different duration lengths, speech styles (e.g. scripted vs. spon-
taneous), number of speakers, and languages (e.g. monolingual
vs. multilingual).

In this paper, we propose the first lightweight and effi-
cient spoken language identification system for detecting lan-
guages from long-form podcast audio that can be of arbitrary
length and have multiple speakers. We trained a lightweight
multi-class feedforward neural network with VGGVox speaker
embeddings [5] as input, and we evaluated our system on a
human-verified podcast dataset containing five languages (En-
glish, Spanish, German, Portuguese, and Swedish) as well as
on the same set of languages from the public VoxLingua107
dataset [6], where our model achieved strong results without re-
quiring any audio preprocessing or denoising besides input nor-
malization. We also compared our model against a pre-trained
state-of-the-art (SOTA) SLI model i.e. ECAPA-TDNN [7] on
the same podcast test set. We observed that ECAPA-TDNN
ran into the Out-of-Memory issue when predicting languages
for episodes longer than 15 minutes, while our model is able to
predict languages for podcast episodes of five hours and longer.
The ability of making efficient inference is important, particu-
larly for long-form multilingual audio, because this can avoid
biases introduced by audio sampling (e.g. having to sample
short clips from long audio) and enable multilingual language
detection directly on the original audio without having to split
the audio into chunks of shorter lengths or different languages.

2. Previous Work
Existing SLI systems mainly process short-form, monolingual,
and single-speaker audio. For instance, Mandal et al. [8] pro-
posed an attention-based convolutional recurrent neural net-
work extracting Mel-frequency Cepstral Coefficients from au-
dio for language identification; their approach, trained on the In-
dian Language Dataset [9], uses short-form audio samples that
are on average less than 30 seconds. Sarthak et al. [10] trained
an attention-based SLI model using as input log-Mel spectro-
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gram images on the VoxForge Dataset [11] of short-utterance
audio clips in one of the following languages: English, French,
German, Spanish, Russian, and Italian. Li et al. [12] used
a novel loss function named tuplemax loss to replace the
commonly used softmax loss function so as to model the prior
knowledge of a common speaker who can usually speak a small
set of languages instead of a large set of all possible languages;
their system only processes short-form audio, using as input ut-
terances truncated to the first 4 seconds.

Existing SLI datasets only contain short-form audio as well,
such as the NIST Language Recognition Evaluation (LRE)
dataset [13], the Common Language Dataset [14], and the
VoxLingua107 dataset [6] etc., of which the audio length varies
from a few seconds to a few minutes, which is much shorter than
the average duration of commonly seen long-form audio media
such as podcast, as over 50% of podcast are between 20 and 60
minutes long according to studies until March, 2023 [15].

As a result, existing SLI systems and datasets are not suited
for tackling long-form audio which is more complex due to its
heterogeneous characteristics, such as longer duration, multi-
ple speakers, diverse speech styles, multilinguality, and code-
switching.

3. Data
A type of long-form audio that involves a lot of variety and
complexity is podcast. We use podcast audio to illustrate how
our proposed system applies to long-form audio. In this section,
we first highlight some unique characteristics of podcast data in
general (§3.1) and then present details of the training and test
data used in our study (§3.2).

3.1. Overview of Podcast Data

We randomly sampled 30,000 podcast episodes from the Spo-
tify podcast catalogue available online and gathered data of (1)
episode duration from metadata fetched using Spotify Podcast
API [16] and (2) estimated number of speakers by applying
unsupervised speaker diarization [17] to the podcast audio.

Figure 1 shows the duration distribution of the sampled
episodes, where only 22.5% of the episodes have a duration
shorter than 5 minutes, and around half of podcast episodes
(40.9%) are longer than 30 minutes. Thus, in order to pro-
cess podcast and other long-form speech media, an SLI sys-
tem needs to be able to process much longer audio than existing
SLI datasets (e.g. utterance-length audio clips that are usually a
few seconds long). Figure 2 shows the distribution of estimated
number of speakers from the sampled episodes. Even though
the majority (71.5%) have only 1 speaker, there are still 28.5%
of episodes from the sample set that contain at least 2 speakers.
Thus, it is important for a long-form audio SLI system to be
able to handle multi-speaker audio data.

Besides processing audio of arbitrary length and with un-
restricted number of speakers, our work also aims to make
SLI systems aware of underrepresented speaker demograph-
ics [18] by steering system development away from adhering
closely to standard scripted speech styles that are typically over-
represented by existing SLI datasets mentioned in Section 2.

3.2. Training and Test Data

We used Spotify podcast data2 for constructing both the train
and test sets for training and evaluating our long-form audio SLI

2https://open.spotify.com/genre/podcasts-web

Figure 1: Duration Distribution of Sampled Podcast Episodes

Figure 2: Estimated Number of Speaker(s) in Sampled Podcast
Episodes

system. We selected the top 10 languages3 spoken in the Spo-
tify podcast catalogue based on fetched metadata as our train-
ing languages. We then randomly sampled 1,000 episodes from
different shows for each of the 10 training languages: each sam-
pled episode has a language label from metadata that is directly
provided by the creator when uploading the episode [19]. It
is worth noting that creator-provided language labels are noisy
and can be error-prone due to lack of human verification.

Similar to the training set, for testing, we also sampled from
different shows from the Spotify podcast catalogue and con-
structed a podcast test set that contains five test languages (En-
glish, Spanish, German, Portuguese, and Swedish), while en-
suring that there is no overlap between training and test sets at
the show level. Each test language has 1,000 randomly sam-
pled episodes (deduplicated at the show-level from the training
set), and the whole test set has been verified by human anno-
tators to ensure that language labels are correct. Specifically,
8,868 episodes were randomly sampled from the Spotify cata-
logue in English, German, Spanish, Portuguese, and Swedish,
with at most one episode per show to increase data diversity,
from which 1,000 episodes were then sampled for each test lan-
guage. An Appen annotation task4 was created for each 30-
second snippet sampled from each episode, for which human
annotators were asked to (1) verify the episode language and
(2) manually transcribe the sampled 30-second snippet.

Furthermore, in order to benchmark against existing SLI
systems to show that our system can also generalize well to
short-form audio, we also constructed a second test set from the
VoxLingua107 dev set [5] containing only short and utterance-
level audio clips (i.e. each audio clip on average ranges from 3
to 5 seconds long and contains one utterance), which is largely

3The top 10 languages spoken in the Spotify podcast catalogue, as
of 2022 January, are: English, Spanish, Portuguese, German, French,
Indonesian, Swedish, Italian, Chinese, and Welsh.

4https://appen.com/
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Language

train set
long-form audio

(podcast)

test set 1
long-form audio

(podcast)

test set 2
short-form audio
(VoxLingua107)

duration duration duration
English (en) 1,067 hr 1,103 hr 874 sec
Spanish (es) 1,089 hr 1,120 hr 605 sec
Portuguese (pt) 1,068 hr 1,093 hr 6 sec
German (de) 1,028 hr 1,102 hr 876 sec
Swedish (sv) 1,058 hr 1,067 hr 1,014 sec
French (fr) 1,070 hr − −
Indonesian (id) 1,022 hr − −
Italian (it) 1,070 hr − −
Chinese (zh) 1,035 hr − −
Welsh (cy) 1,065 hr − −
total duration 10,572 hr 5,485 hr 3,375 sec

Table 1: Overview of Training and Test Data Composition

different from the podcast data in terms of both duration and
speech style. The inclusion of this second test set serves to
benchmark the performance of our system on a public dataset,
which can be used to compare against existing SLI systems and
show that our proposed system, albeit only trained on long-form
podcast audio data, is able to generalize well to short-form au-
dio data and achieve strong performance. Table 1 shows the
data composition of our training and test sets.

4. System Design
Our proposed approach to SLI consists of two main steps:
(1) Apply unsupervised speaker diarization [17] to generate
speaker-level VGGVox speaker embeddings [5]; (2) Feed the
averaged speaker embedding into a multi-class feedforward
neural network (FNN) for training and inference.

4.1. Generation of Diariazed Speaker Embeddings

For both training and inference, given an input podcast audio
that is on average longer than 30 minutes (input audio duration
of training and test sets follows the same distribution as shown
in Figure 1), we extract its raw waveform data and re-sample at
16k Hz. We then perform an unsupervised speaker diarization
task using the technique proposed by Tanveer et al. [17] on the
re-sampled waveform to generate a series of 512-dimensional
VGGVox speaker embedding vectors [5], with each speaker em-
bedding vector corresponding to a segment where a speaker is
dominantly speaking. The VGGVox embeddings are trained
over a large-scale, wildly collected dataset i.e. VoxCeleb [5]
that consists of over a million short utterances from over 7,000
celebrities all over the world. Our choice of VGGVox embed-
dings as input was motivated by its applicability as an embed-
ding model trained over a large-scale representation of diverse
languages and dialects which are available within the VoxCeleb
dataset [5].

To convert the series of speaker embeddings as input into an
FNN model, we perform z-score normalization across all indi-
vidual speaker embeddings for the same audio and convert them
into an averaged speaker embedding. The averaged VGGVox
speaker embedding is then fed to an FNN model for both train-
ing and inference. Figure 3 (top) shows the process of speaker
diariazation and speaker embedding generation.

4.2. Model Architecture

Figure 3 also provides an overview of the proposed SLI system,
VGGVox-FNN, where the averaged VGGVox speaker embed-
ding generated from Step 1 is fed as input into the FNN model
as Step 2, a lightweight architecture consisting of two similar
blocks where each block has two dense layers, one batch nor-
malization layer and one dropout or softmax layer.

As shown in Figure 3, one advantage of our proposed sys-

Figure 3: Proposed SLI System: VGGVox Embedding Input and
FNN Classifier

tem is that it is lightweight and efficient: the FNN has only
181,983 trainable parameters and no hyperparameter tuning
was conducted during training; once trained, the model is fast
to run at inference time, and it does not require GPU or any
industry-level compute resources to run. Specifically, at training
time, the model training completed within 1 hour on a standard
Dataflow n1-standard-4 machine;5 at inference time, on
the same n1-standard-4 machine, an audio clip of 1 hour
long can be inferred within 2-3 seconds provided that the input
speaker embeddings are already generated; adding up the train-
ing and inference time leads to the total system runtime, which
is very fast and efficient. Furthermore, the maximum memory
usage at inference time (using the same n1-standard-4ma-
chine) is less than 2GB, which is very lightweight. Hence, be-
ing lightweight and efficient makes our system readily available
for scaling up (e.g. inside a multilingual system such as ma-
chine translation) with low cost at runtime, which is critical for
systems that need to be served at scale with tight inference bud-
get [20].

4.3. Training Process

During training, we applied a 90%/10% train/validation split,
and we ensured that every language label was evenly present
in each split. We used a batch size of 10 and a dropout
rate of 0.4 and trained the model for 500 epochs. We
also applied ReduceLROnPlateau6 to reduce learning rate
when the loss has stopped improving for over 5 epochs and
EarlyStopping7 to stop training when the loss has stopped
improving for over 8 epochs.

5Dataflow machine types: https://cloud.google.com/
compute/docs/machine-resource

6https://keras.io/api/callbacks/reduce_lr_on_
plateau/

7https://keras.io/api/callbacks/early_
stopping/
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5. Results
After training our proposed system on the podcast train set
(Table 1), we evaluate it on the two test sets (Table 1) de-
scribed in Section 3.2. We present and discuss the results below.

5.1. Evaluation Results 1: Podcast Test Set

Table 2 shows the evaluation results (averaged over three runs)
of our proposed system on the long-form audio podcast test data
i.e. test set 1 in Table 1. Overall, our proposed system
achieved an average F1 score of 91.23 across all test languages.

For benchmarking purposes, we also ran the pre-trained
ECAPA-TDNN model, a SOTA spoken language recognition
model trained on the VoxLingua107 dataset using Speech-
Brain [7] [21], on the same podcast test set using the same type
of n1-standard-4 machines on Google Cloud Platform.8

However, we noticed that at inference time, the ECAPA-TDNN
model failed to predict languages for podcast episodes longer
than 15 minutes due to Out-of-Memory error; by contrast, our
system is able to predict languages for episodes of five hours
and longer.

Language
System VGGVox-FNN

Precision Recall F1 AUC
English (en) 97.07 88.33 92.50 0.99
Spanish (es) 93.93 87.67 90.69 0.98
German (de) 98.15 88.67 93.17 0.99
Portuguese (pt) 88.46 88.33 86.74 0.95
Swedish (sv) 94.50 91.67 93.06 0.98
mean 94.42 88.93 91.23 0.98

Table 2: Results on the Podcast Test Set (test set 1)

5.2. Evaluation Results 2: VoxLingua107 Dev Set

Table 3 shows the evaluation results (averaged over three runs)
of our proposed system on the short-form audio VoxLingua107
dev set i.e. test set 2 in Table 1. While our approach was
trained only on long-form audio podcast data, which is signifi-
cantly different from the VoxLingua107 data (i.e. shorter utter-
ances rather than long audio, scripted rather than spontaneous,
single-speaker rather than multi-speaker etc.) that was unseen
during training, our approach still achieved >80% precision
and recall on all test languages except for Portuguese, which is
largely due to the small data size of Portuguese (there is only
one Portuguese audio clip of 6 seconds long in the VoxLin-
gua107 dev set).

The evaluation results on test set 2 demonstrate that
our proposed system, VGGVox-FNN, albeit only trained on
long-form audio such as podcast, can generalize well to short-
form audio such as utterance clips;9 by contrast, it is harder for
any existing SLI system trained on short-form audio to general-
ize to long-form audio: one example being the ECAPA-TDNN
model which fails to predict languages for audio longer than 15
minutes (Section 5.1).

6. Discussion: Speaker-Level SLI for
Code-switching

In Section 4 we described our approach that takes as input a
VGGVox speaker embedding for SLI, and then in Section 5 we

8https://cloud.google.com/compute/docs/
machine-resource

9The mean error rate of our proposed system on the five evaluated
languages from the VoxLingua107 dev set is 6.1%, on par with the error
rates of the SOTA SLI systems presented in Babu et al. [22] which range
from 7.2% to 5.7% (though averaged over all 33 languages from the
VoxLingua107 dev set).

Language
System VGGVox-FNN

Precision Recall F1 AUC
English (en) 88.33 85.48 86.89 0.97
Spanish (es) 80.65 83.32 81.97 0.98
German (de) 85.07 83.82 87.69 0.96
Portuguese (pt) 50.00 100.00 66.67 0.99
Swedish (sv) 81.82 88.89 85.21 0.93
mean 77.17 88.30 81.69 0.97

Table 3: Results on the VoxLingua107 Dev Set (test set 2)
for Selected Languages

showed that when taking the average speaker embedding of a
long audio (i.e. podcast) as input, the system predicts a single
language spoken in the audio.

For long-form audio, code-switching is rather common, for
example, different speakers may speak different languages in
the same podcast episode. Our system can be easily adapted to
perform speaker-level SLI to tackle code-switching audio, in
which case, instead of using the average speaker embedding as
input, we can simply use the individual speaker embeddings
as input, and the system will then predict the languages spoken
by each individual speaker where the predictions can involve
one or multiple languages in case of code-switching. A limita-
tion of this work is that because no annotated data at utterance-
level is available, a large-scale speaker-level SLI evaluation is
out of scope of the current study. However, we provide an exam-
ple below which demonstrates the applicability of our system to
speaker-level SLI. Figure 4 shows an example of applying the
system to Episode 6: Le surfeur sans limites (The Surfer With-
out Limits) from Duolingo French Podcast [23]: the audio of
this episode contains code-switching, where speaker A speaks
in English as a narrator and speaker B speaks in French as an
interviewee; the system predicts different languages at speaker-
level where speaker A’s language is predicted as English (“en”)
and speaker B’s as French (“fr”).

Figure 4: Example of Speaker-level SLI for Code-switching Au-
dio

7. Conclusions
We proposed the first spoken language identification (SLI) sys-
tem that can predict languages for long-form audio, which poses
extra challenges to existing SLI systems due to its heteroge-
neous nature (e.g. diverse speech styles, multiple speakers, var-
ied duration, multilinguality). We use podcast audio as a rep-
resentation of long-form audio, and we trained and evaluated a
system that is lightweight and efficient at runtime, hence easy
to scale up and crucial for deployment to production. Our pro-
posed system achieved strong performance on long-form pod-
cast audio, and it was shown to generalize well to short-form
audio even if it was unseen during training. Finally, our sys-
tem can be easily adapted to perform speaker-level SLI to de-
tect multiple languages spoken by different speakers within the
same audio, which is important when processing and analyzing
audio containing code-switching.
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