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Abstract
Emotional Voice Conversion (EVC) is a task that aims to con-
vert the emotional state of speech from one to another while
preserving the linguistic information and identity of the speaker.
However, many studies are limited by the requirement for par-
allel speech data between different emotional patterns, which
is not widely available in real-life applications. Furthermore,
the annotation of emotional data is highly time-consuming and
labor-intensive. To address these problems, in this paper, we
propose SGEVC, a novel semi-supervised generative model for
emotional voice conversion. This paper demonstrates that us-
ing as little as 1% supervised data is sufficient to achieve EVC.
Experimental results show that our proposed model achieves
state-of-the-art (SOTA) performance and consistently outper-
forms EVC baseline frameworks.
Index Terms: emotional voice conversion, variational autoen-
coder, semi-supervised, end-to-end

1. Introduction
Emotional voice conversion (EVC) is a variety of voice con-
version (VC) that aims to transform the emotional state of a
spoken utterance from the source to the target, while preserving
both the speaker identity and the underlying linguistic content.
In recent years, EVC has gained considerable interest and at-
tention within the field of speech technology, and offers great
potential for application in human-machine interaction, encom-
passing expressive text-to-speech (TTS), voice assistants, and
conversational robots [1, 2, 3].

Previous studies on EVC has primarily relied upon paired
parallel training data, consisting of the same content spoken
by the same speaker, but with varying emotions. The early-
stage EVC methods learned feature mapping from these paired
utterances through Gaussian mixture models (GMM) [4] and
regression-based clustering [5]. Recently, deep learning tech-
niques, including those based on Deep Neural Networks (DNN)
and Recurrent Neural Networks (RNN) have shown consid-
erable efficacy in EVC [6, 7]. However, obtaining paral-
lel data and the aligning utterance pairs can be arduous and
time-consuming. As a result, EVC techniques employing non-
parallel data are better suited for real-world applications.

Recent models for non-parallel EVC can generally be cat-
egorized into GAN-based [8, 9] and disentanglement-based
[10, 11]. GAN-based models, including CycleGAN [8] and
StarGAN [9], utilize the cycle-consistency loss to eliminate the
need for parallel training data. Disentanglement-based mod-
els generally adopt an autoencoder framework to decompose
the speech into emotion and emotion-independent representa-
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Figure 1: The Graphical models show the generative model
(solid arrow) and the variational family (dashed arrow).

tions, for example, VAW-GAN [10] and SIEVC [12]. In addi-
tion, studies have shown that utilizing TTS or ASR to model
linguistic information in EVC models can significantly reduce
pronunciation errors and improve speech quality [13, 14]. To
model the emotional information, the style vector derived from
the style encoder can be employed as a one-hot vector repre-
senting the desired emotion, eliminating the requirement for
explicit emotion labeling [13]. However, the style vector can-
not be reliably identified during repeated training [15]. Many
studies [14, 16] utilize a global emotion embedding obtained
through emotion labeling to perform EVC, however, annotating
emotion labels on data can be a laborious and time-intensive
process. Moreover, previous EVC methods rely on spectral
features as an intermediate representation and another neutral
vocoder for waveform synthesis, which may affect the synthe-
sis quality. To overcome these limitations, we have proposed a
novel semi-supervised generative model, SGEVC.

The present work presents three primary contributions.
Firstly, we propose a new generative model for EVC, which
enables emotional voice conversion utilizing non-parallel data.
Secondly, we introduce a semi-supervised training approach
that utilizes a limited number of emotional labels to effectively
regulate emotions. Lastly, we demonstrate the state-of-the-
art (SOTA) performance of our end-to-end EVC models. The
source code and audio samples can be found on GitHub 1.

2. The Proposed Approach
2.1. Generative model

Following the framework of VAE [17], prior work [18] takes
text condition yt as an input to predict waveform x, represented
by q(x|yt), by means of a latent representation z generated by
the conditional distribution p(z|yt). The speech waveform x is
compressed into a frame-level representation z obtained from
the posterior distribution q(z|x) to reconstruct the waveform

1https://github.com/haizhu1/sgevc
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Figure 2: Diagram of the proposed approach, showing the training procedure (left) and inference procedure(right).

(represented as p(x|z)). The above process is illustrated in the
left side of Fig. 1.

In this paper, we present a novel graphical model that
constructs a space of disentangled representations of linguis-
tic, speaker identity, and emotion attribute. As depicted in
the right side of Fig. 1, the conditional distribution q(z|yt)
enables the generation of speaker-independent and emotion-
independent linguistic representation through the incorporation
of speaker identity ys and emotional attribute yl as conditions.
Subsequently, a sequence of speech frames is extracted from
p(x|z,ys,yl). The generative model can be written as:

p(x,z,yl,yt,ys) = p(x|z,ys,yl)p(z|yt)p(yl). (1)

We assume that the speaker identity ys is observed, while
the emotional attribute yl follows a categorical distribution with
weights specified by π, i.e., yl ∼ Cat(π) and p(yl) = k−1

is a fixed uniform prior. To determine the mixture probabilities
q(yl|x), we use the categorical re-parameterization technique
with Gumbel-Softmax [19]. Specifically, the Gumbel-Softmax
layer outputs the mixture probabilities based on Gumbel sam-
ples gi ∼ Gumbel(0, 1) that are first sampled and then com-
puted into yli , where

yli =
exp ((logπi + gi) /τ)∑k
j=1 exp ((logπi + gi) /τ)

for i = 1, ...k, (2)

and τ is the temperature coefficient.
In accordance with the VAE framework, we employ a vari-

ational distribution q(yl|x)q(z|x,ys,yl) to approximate the
posterior q(yl,z|x,ys). The evidence lower bound (ELBO)
can be expressed as:

L = Eq(yl,z|x,ys)

[
log

p(x,z,yl,yt,ys)

q(yl,z|x,ys)

]
(3)

= Eq(yl|x)q(z|x,ys,yl) [logp(x|z,ys,yl)]

− Eq(yl|x) [KL(q(z|x,ys,yl)||p(z|yt))]

−KL (q(yl|x)||p(yl)) .

Here, q(z|x,ys,yl) can be estimated via Monte Carlo
sampling, and the q(yl|x) term is differentiable due to re-
parameterization with Gumbel-Softmax.

2.2. Semi-supervised training

The training objective in Eq. (3) enables emotional voice con-
version by extracting the unsupervised style vector from the tar-
get speech. However, the style vector is not formally identifi-
able and may not consistently capture the same latent attribute

across multiple training iterations [15]. This can potentially de-
grade the quality of emotional voice conversion. Therefore, to
address these concerns, we opt to provide partial supervision
to the latent variable yl. In cases where emotional labels yobs

are available, we introduce a supervised loss that modifies the
Eq. (3) as follows:

Lsup = Eq(yl|x)q(z|x,ys,yl)[logp(x|z,ys,yl)] (4)
− Eq(yl|x) [KL(q(z|x,ys,yl)||p(z|yt))]

+ αlog(q(yl = yobs)|x),
where α is a hyperparameter utilized to regulate the final term’s
contribution. Here, we replace the final term in the original
ELBO with a supervised cross-entropy term, which encourages
q(yl|x) to match the observed label.

In our experiments, we observed that the model collapses
into the yl prior when using Eq. (3), which leads to low emo-
tion classification accuracy. To address this issue, we adopt a
modification to the lower bound proposed by [20], which main-
tains the cost from the yl prior term at a constant value γ when
it falls below a certain threshold. This allows us to use the un-
supervised loss, adapted from Eq. (3), in cases where emotion
labels yobs are not available:

Lunsup = Eq(yl|x)q(z|x,ys,yl)[logp(x|z,ys,yl)] (5)
− Eq(yl|x) [KL(q(z|x,ys,yl)||p(z|yt))]

−max(γ,KL(q(yl|x)||p(yl))).

2.3. Model architecture

As illustrated in Fig. 2, we utilize neural networks to parameter-
ize p(z|yt) and p(x|z,ys,yl) as the TTS encoder and decoder.
The two posteriors, q(yl|x) and q(z|x,ys,yl), can be param-
eterized by latent attribute encoder and VC encoder. Our pro-
posed architecture, based on the VITS [18], incorporates several
novel modifications to implement our graphical model.

The TTS encoder comprises of a transformer-based encoder
that accepts input text yt and generates hidden representations,
along with a linear projection layer that produces the mean and
variance for the prior distribution p(z|yt) from the encoder’s
output. To transition z vectors from text-level to frame-level
during training and prediction, we utilize methods of mono-
tonic alignment search and stochastic duration predictor from
VITS. The VC encoder takes the linear-scale spectrogram and
passes it through a 1-D convolutional layer, followed by con-
ditional WaveNet residual blocks that are conditioned by the
observed speaker embedding ys and emotion attribute embed-
ding yl. The resulting output is then passed through two dis-
tinct linear projection layers to create the posterior distribution
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(a) γ = 0.0, acc = 61.3% (b) γ = 0.5, acc = 72.3%

(c) γ = 1.0, acc = 90.7% (d) γ = 2.0, acc = 89.2%

Figure 3: t-SNE plots showing the latent space of yl under different value of γ on testing dataset (α is set to 0.1), with points colored
by categories predicted by our proposed model (left), and ground truth categories (right).

q(z|x,ys,yl) by producing the mean and variance. To im-
prove the expressive capability of VAE, we incorporate normal-
izing flows between the TTS encoder and VC encoder, similar
to VITS. We employ the same HiFi-GAN [21] version1 struc-
ture for the decoder as used in VITS, and also adopt the same
adversarial training process introduced by VITS to enhance the
speech quality of the decoder.

The speaker embedding ys is obtained from a speaker look-
up table. For the latent attribute embedding yl, we first pass
the linear-scale spectrogram through a reference encoder [22],
which consists of several convolutional layers and a mean pool-
ing layer to get a single vector. The reference encoder’s output,
which represents the utterance-level acoustic conditions of the
target speech, is then passed through a Gumbel-Softmax layer
[19] to generate k-dimensional sample vectors through sam-
pling, and is then flattened and passed through a linear projec-
tion layer to generate a fixed-dimensional latent attribute em-
bedding. During the training stage, we add the non-linguistic in-
formation of the same speaker, which is represented by the sum
of ys and yl, to the VC encoder, stochastic duration predictor,
normalizing flow f , and decoder. During the inference stage,
we add the non-linguistic information of the source speaker,
represented by the sum of ysrc

s and ysrc
l , to the VC encoder and

the normalizing flow f . Additionally, we add the non-linguistic
information of target speaker, which is represented by the sum
of ytrg

s and ytrg
l , to the decoder and the inverse transformation

of the normalizing flow f−1.

3. Experiments and Analysis
3.1. Experiment setup

We conducted experiments on the emotional speech dataset
(ESD) [10], which comprises 350 parallel utterances averag-
ing 2.9 seconds in length and recorded by 10 native Mandarin
speakers and 10 native English speakers. The corpus for each
speaker includes five emotions: happy, sad, neutral, angry,
and surprised. In this study, we focus only on the Mandarin-

speaking subset of the dataset. For each speaker, we perform
emotion conversion from neutral to happy (N2H), neutral to
angry (N2A), neutral to sad (N2S1), and neutral to surprised
(N2S2) within the same speaker. For each conversion pair, we
partition the corpus into a training set (330 samples) and a test-
ing set (20 samples). To ensure that our proposed model is
not trained with parallel conditions, we randomly shuffle the
training set and generate non-parallel utterances for each train-
ing batch. To assess the effectiveness of our proposed method,
we compare its results with the state-of-the-art methods: the
StarGAN-based and the PPG-based EVC models.

The StarGAN [9] can perform multi-class to multi-class
emotional voice conversion and employ the WORLD vocoder
for speech synthesis. As for the PPG-based EVC baseline
model, we choose the BNE-Seq2seqMoL model [23, 24], which
utilizes the pinch encoder to capture emotional prosody and
uses HiFi-GAN version1 as the vocoder. To ensure a fair
comparison, we employ available open-source implementations
and train the models using the same data. All models were
trained until they reached convergence. We fine-tune the well-
trained BNE-Seq2seqMoL model for 10k steps and the HiFi-
GAN vocoder for 1M steps with the ESD training set. For
our proposed model, ys is a 256-dimensional vector, and yl is
a 5-way categorical variable with a class dimension 32. The
latent variable z is 192-dimensional vector and is assumed
to have a Gaussian distribution. We obtain our linear spec-
trogram xlin from raw waveforms xraw through Short-time
Fourier transform (STFT) with FFT size 1024, window size
1024, and hop size 256. We gradually decrease the temper-
ature τ in the Gumbel-Softmax layer using a schedule τ =
max(1.0, exp(−3×10−5t)) of the global training step t, where
τ is updated every 1000 steps. All of our proposed models were
trained for 200k steps, with a batch size of 64.

3.2. Evaluation of emotion control

To evaluate the effectiveness of the semi-supervised latent vari-
able yl for emotion control, we trained the model detailed in
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Table 1: The accuracy of emotion classification

Accuracy(%)
Supervision level (%)

(γ is set to 1.0) α = 0.01 α = 0.1 α = 1.0

1 66.7 84.1 82.5
5 81.4 87.7 83.9

10 82.3 91.3 87.6
20 84.4 93.5 89.3
100 86.5 93.3 91.9

Table 2: MOS results with 95 % confidence interval to assess
the speech naturalness.

MOS N2H N2A N2S1 N2S2

Ground-Truth 4.52±0.13 4.78±0.09 4.49±0.16 4.73±0.11
StarGAN 2.65±0.13 2.64±0.17 2.67±0.15 2.62±0.14

PPG 3.05±0.16 3.12±0.15 3.15±0.16 3.02±0.13
SGEVC-1 4.21±0.17 4.24±0.16 4.37±0.14 4.19±0.12

SGEVC-10 4.29±0.12 4.28±0.12 4.31±0.13 4.24±0.14

Section 2 on the ESD dataset using varying hyperparameter set-
tings. This involved adjusting the values of γ, which resolve
the KL collapse problem, and α, which regulate the supervi-
sion loss. We first visualizing the latent variable space of yl for
different values of γ in order to determine the optimal value.
We then computed the accuracy of emotion classification under
different levels of supervision and various values of α.

We selected 20 utterances from each emotion category in
the training set as supervised data, while the rest was used as
unsupervised data. To evaluate the accuracy of our proposed
approach, we assigned the utterances generated by our method
from the testing set to the emotion category with the highest
posterior probability (argmaxylq(yl|x)), and calculated the
accuracy based on the ground truth. As illustrated in 3, it was
observed that with γ being set to zero, each data point was dis-
persed across all clusters, resulting in a mere 61.3% accuracy in
emotion classification. This phenomenon can be interpreted as
the result of over-regularisation by the yl prior. However, when
γ is not zero, we observed that these embeddings became more
emotion-discriminative. We found a value of γ = 1.0 achieved
the highest classification accuracy of 90.7%. These results con-
firm the effectiveness of our modification to the lower bound.

In addition, we evaluated the degree of emotional control
of our model by assessing its emotion classification accuracy
on a test set with multiple levels of supervision, similar to the
metric used in [15]. As shown in Table 1, We discovered that
the best emotional control, as measured by classifier accuracy,
is achieved when α = 0.1. At the setting of α = 0.1, our
proposed SGEVC model is able to achieve an emotion cate-
gory accuracy of 84% with only 1% supervision level (around
20 seconds per emotion for each speaker, resulting in a total of
approximately 15 minutes of labeled emotional data). This sug-
gests that the SGEVC model is highly effective in controlling
emotions with a very small amount of supervised data. Anno-
tating only 20 seconds of emotional data per speaker per emo-
tion is feasible for most teams constructing EVC systems. We
strongly encourage readers to listen to our demo page 2.

2https://haizhu1.github.io/sgevc/

Table 3: MOS results with 95 % confidence interval to assess
the emotion similarity.

MOS N2H N2A N2S1 N2S2

StarGAN 1.90±0.13 1.98±0.14 2.13±0.15 1.79±0.16
PPG 2.46±0.18 2.34±0.19 2.68±0.17 2.39±0.18

SGEVC-1 3.72±0.13 3.32±0.18 3.58±0.13 3.43±0.16
SGEVC-10 3.71±0.12 3.64±0.12 3.64±0.13 3.63±0.15

Table 4: MCD results for emotional voice conversion.

MCD N2H N2A N2S1 N2S2

StarGAN 4.98 4.96 5.08 5.21
PPG 3.95 3.82 5.61 4.09

SGEVC-1 3.49 3.41 3.79 3.76
SGEVC-10 3.45 3.40 3.77 3.72

3.3. Subjective and objective evaluation

To evaluate the naturalness and similarity of the converted
speech, we employed the same methodology as detailed in
[25]. The naturalness of speech was measured using mean opin-
ion score (MOS) on a 5-point scale, ranging from 1-bad to 5-
excellent. For similarity evaluation, we requested the listeners
to rate the similarity of speech pairs using a 4-point scale, rang-
ing from: (1) different emotion, absolutely sure, (2) different
emotion, not sure, (3) same emotion, not sure, (4) same emo-
tion, absolutely sure. We invited 8 raters, all of whom are na-
tive Mandarin speakers. Additionally, we conducted an objec-
tive evaluation using Mel-cepstral distortion (MCD) to quantify
the spectral distortion between the generated and ground truth
speech. The proposed EVC models were trained and evaluated
as SGEVC-1 (1% supervision level, γ = 1.0, α = 0.1) and
SGEVC-10 (10% supervision level, γ = 1.0, α = 0.1). For
comparison purposes, we also trained and evaluated two base-
line models, referred to as StarGAN and PPG.

Table 2 illustrates the superior performance of the SGEVC-
10 model in all emotion conversion pairs. Surprisingly, the nat-
uralness of SGEVC-1 model is scarcely impacted, despite hav-
ing only 1% emotional supervision. Both models exhibit state-
of-the-art (SOTA) performance, as their naturalness scores ex-
ceed 4.0. We argue that the end-to-end architecture of our EVC
framework has played a pivotal role in augmenting the quality
of speech. Moreover, our proposed models outperform other
baseline models in the similarity metric, indicating better emo-
tion similarity as per human perceptual evaluation, as shown in
Table 3. Table 4 further reports the MCD results of the emotion
conversion pairs, demonstrating that SGEVC-10 outperforms
other models in terms of transfer performance.

4. Conclusions
This paper presents the SGEVC, an end-to-end semi-supervised
generative model designed for emotional voice conversion. The
proposed method leverages VAE frameworks to disentangle lin-
guistic, speaker identity, and emotion spaces. In addition, this
paper introduce a semi-supervised training approach that uti-
lizes a limited number of emotional labels to effectively con-
trol emotions. Experiments show that our proposed model can
effectively conduct emotional voice conversion with only 1%
supervised data, and it achieves state-of-the-art performance.
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