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Abstract
Recently, with the widespread popularity of the Internet, so-
cial networks have become an indispensable part of people’s
lives. As social networks contain information about users’ daily
moods and states, their development provides a new avenue for
detecting depression. Although most current approaches focus
on the fusion of multimodal features, the importance of fine-
grained behavioral information is ignored. In this paper, we pro-
pose the Joint Attention Multi-Scale Fusion Network (JAMFN),
a model that reflects the multiscale behavioral information of
depression and leverages the proposed Joint Attention Fusion
(JAF) module to extract the temporal importance of multiple
modalities to guide the fusion of multiscale modal pairs. Our
experiment is conducted on D-vlog dataset, and the experimen-
tal results demonstrate that the proposed JAMFN model outper-
forms all the benchmark models, indicating that our proposed
JAMFN model can effectively mine the potential depressive be-
havior.
Index Terms: Depression detection, Vlog, Joint Attention
Multi-Scale Fusion Network (JAMFN)

1. Introduction
Depression is a common mental illness that affects hundreds
of millions of people of all ages worldwide [1]. According to a
study by the World Health Organization, depression is currently
ranked as the 3rd most significant economic burden of disease
and is expected to grow, becoming the most serious disease by
2030 [2].

Depression is usually accompanied by cognitive, physical,
and behavioral symptoms such as low interest in everything,
depressed mood, waning energy, poor self-identity, and poor
concentration, and untreated depressed patients may even have
suicidal thoughts of self-harm [3]. The current clinical diagno-
sis relies mainly on the clinical experience of physicians. The
diagnosis of depression by interviewing the patient has a high
rate of misdiagnosis [4]. The reason is that most of the patients
have a restrained mentality towards the doctors, which prevents
them from communicating effectively with the patients. There-
fore, it is of great significance to explore an objective and high
accuracy auxiliary diagnostic method. Currently, auxiliary di-
agnosis of depression can be divided into two types based on
physiological signals and non-physiological signals. Physio-
logical signals include galvanic skin response [5], heart rate [6],
electroencephalogram [7], and nuclear magnetic [8]. More re-
searchers have developed studies on non-physiological signals
such as speech [9], text [10] and facial expressions [11]. A
study by Mehrabian et al [12] found that the amount of emo-
tional information conveyed through facial expressions, acous-
tic features and text accounted for 55%, 38% and 7% of the total

information, respectively. Therefore, the auxiliary diagnosis of
depression based on visual and acoustic features has become a
hot research topic.

Our contributions. To mine and fuse multimodal fine-
grained features, we propose the Joint Attention Multi-Scale
Fusion Network (JAMFN), a model for vlog-based depression
detection with acoustic and visual features. The JAMFN model
is designed in four steps: to begin with, BILSTM is used to ex-
tract the context-dependent high-level semantic features of each
modality. Then, a series of convolutions are further used to gen-
erate multi-scale semantic features based on context-dependent
features. Next, the proposed Joint Attention Fusion (JAF) mod-
ule effectively leverages the temporal importance of multiple
modalities to guide the same scale feature fusion of different
modalities. In the end, the logical value of the depression detec-
tion label is inferred from the depression detection layer. Em-
pirical results on D-vlog dataset demonstrate that the proposed
JAMFN model outperforms all the benchmark models.

2. Related work
Shen et al [13] extracted six depression-related features from
Twitter postings and used these features as the basis for
constructing a multimodal learning dictionary for depression
recognition, and they found that depressed users had nearly
200% more first-person pronouns in their postings compared
to healthy people. Gui et al [14] proposed a cooperative multi-
modal approach for automatic selection of relevant images and
texts, and experimental results showed that the model has good
robustness. Chiong et al [15] proposed text preprocessing and
text-based characterization methods for depression detection
and demonstrated the generality of their methods through exper-
iments across databases. Mann [16] found that a social media-
based depression detection task can be modeled as a multiple-
instance learning (MIL) problem that models user depressive
behavior by mining the temporal dependencies between user
posts. Cheng et al [17] used the user’s posted text, image and
time as input features, and then analyzed the importance of each
user’s post for depression detection using the T-LSTM model.
Yoon et al [18] collected vlogs related to depression detection
from YouTube, and thus constructed the D-Vlog dataset, and
further proposed the Depression Detector model for depression
detection on vlogs. Li et al. [19] proposed the TAMFN model to
mine temporal information from vlog from unimodal and mul-
timodal perspectives with good results.

3. Proposed Approach
Fig. 1 illustrates the overall depression detection framework
proposed in this paper, which consists of two major components
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Figure 1: An illustration of the proposed overall depression detection framework. The first part of the framework is feature extraction
of the vlog. Dlib toolkit [20] is used to extract facial landmarks of images, and OpenSmile toolkit [21] is used to extract low-level
Descriptors of audio. The rest of the framework is the JAMFN model.

for the extraction of acoustic and visual features of vlog and
the JAMFN model for depression detection. Next, we illustrate
each step in the JAMFN model in detail.

3.1. Multi-modal Temporal Feature Extraction via BiL-
STM

Bidirectional LSTM (BiLSTM) [22] uses two LSTM models
with different directions to learn the semantic dependency from
front to back and from back to front respectively. Each layer
of BiLSTM is composed of two LSTM models with opposite
directions. The output of each layer of BiLSTM is shown as
follows:

h(i)
p = LSTMFW (O(i−1)

p ) (1)

H
(i)
t−p = LSTMBW (O

(i−1)
t−p ) (2)

O(i)
p = [h(i)

p , H
(i)
t−p] (3)

Where t is the length of the sequence, LSTMFW is the LSTM
model learning forward semantic dependence, and h

(i)
p is the

output of LSTMFW at i-th layer at time p. LSTMBW is
the LSTM model learning backward semantic dependence, and
H

(i)
p is the output of LSTMBW at time t− p of the i-th layer.

O
(i)
p denotes the output of i-th layer at time p.

In this paper, we employ two BiLSTM models, BiLSTMa

and BiLSTMv , to capture the bidirectional semantic depen-
dencies of acoustic and visual features, respectively. For the
last layer of BiLSTM, we simply add forward and backward
output features, and then concatenate the output features at all
moments of the last layer of BiLSTM, as shown below:

O(n)
p = h(n)

p +H
(n)
t−p (4)

BiLSTMOutput = Concat(O
(n)
1 , O

(n)
2 , ..., O

(n)
t ) (5)

where n denotes the last layer of the BiLSTM and
BiLSTMOutput is the final output of BiLSTM.

3.2. Multi-scale Feature Generation

Based on BiLSTM to extract multimodal context-dependent se-
mantic features, we introduce a series of convolutions that pro-
vide different receptive fields to further capture the multiscale

behavioral and local contextual relationships of acoustic and vi-
sual features in vlog. Specifically, we employ one-dimensional
convolutions with convolution kernel sizes of 1, 3 and 5 to ex-
tract temporal multiscale features of acoustic and visual, respec-
tively. In addition, we set the padding parameters to 0, 1, and 2
for the convolution kernels of sizes 1, 3, and 5, respectively, to
make the features of each scale have the same dimension.

F i
m = Conv1×i(Fm) i ∈ {1, 3, 5} ,m ∈ {A, V } (6)

Here, FA and FV are context-dependent semantic features
for acoustics and visuals, respectively. F 1

A denotes the fea-
ture obtained by extracting FA with a one-dimensional convo-
lutional kernel of size 1, and so on for other cases.

3.3. Joint Attention Fusion (JAF) Module

For a given video sequence, acoustic and visual features con-
tribute differently to each segment. Since multiple modalities
convey different value information, their complementary rela-
tionships need to be captured efficiently. To reliably combine
these modalities, we propose the Joint Attention Fusion (JAF)
module, which relies on a joint attention-based fusion mech-
anism to efficiently encode the information between modali-
ties, with the detailed structure shown in Fig. 2. Specifically,
through the previous subsection, different scales of acoustic and
visual features can be obtained, and we can construct 3 modal-
ity pairs, i.e., the same scale between different modalities con-
stitutes a modality pair. For the fusion of a modal pair, first,
the feature dimensions of the two modal features XA ∈ RL×H

and XV ∈ RL×H are converted to 1 using two fully connected
layers, respectively, to obtain the temporal features TA ∈ RL×1

and TV ∈ RL×1 of the two modalities, i.e., (L,H) is converted
to (L, 1), where L is the sequence length, and H is the feature
representation dimension.

TA = FC1(XA) (7)

TV = FC2(XV ) (8)

Then, the temporal features of the two modalities are con-
catenated to construct a joint feature representation TJoint, and
then a fully connected layer captures the temporal importance
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Figure 2: An illustration of the proposed JAF module.

across the interaction between acoustics and visuals to obtain
the interactive temporal importance vector TMixed ∈ R2L.

TJoint = Concat(TA, TV ) (9)

TMixed = FC3(TJoint) (10)

Finally, the interactive temporal importance vector TMixed

is separated to obtain the temporal importance vectors
TA mixed ∈ RL and TV mixed ∈ RL for each modality, and
the temporal attention vectors for each modality are obtained
by normalizing the two temporal importance vectors with the
Softmax function, then the ultimate fusion feature Fusion is
given below.

TA mixed, TV mixed = Split(TMixed) (11)

Fusion = Softmax(TA mixed)⊗XA+Softmax(TV mixed)⊗XV

(12)
Here, ⊗ is element-wise product.

3.4. Depression Detection Layer

With the JAF module, we can obtain the fusion features of the
3 modal pairs, and we simply add the fusion features at differ-
ent scales. The reasoning of the ultimate logical value used for

depression detection is as follows:

F out = Fusion1 + Fusion3 + Fusion5 (13)

Ŷ = FC(F out) (14)

Here, Fusion1, Fusion3 and Fusion5 denote the fusion fea-
tures with scales 1, 3 and 5, respectively, and Ŷ is the logical
value. In this work, we utilize the cross-entropy loss function
as the loss function for depression detection.

4. EXPERIMENTS
4.1. Dataset Introduction

The vlog data used in this paper comes from the D-vlog dataset
constructed by Yoon et al [18], who analyzed videos posted on
YouTube between January 1, 2020 and January 31, 2021 to col-
lect the required vlogs based on keywords. the keywords for de-
pression vlogs were ’ depression daily vlog’, ’depression jour-
ney’, ’depression vlog’, ’depression episode vlog’, ’depression
video diary’, ’my depression diary ’, ’my depression story’, etc.
The keywords for non-depression vlogs are ’daily vlog’, ’grwm
(get ready with me) vlog’, ’haul vlog ’, ’how to vlog’, ’day of
vlog’, ’talking vlog’ and so on. After a series of data cleaning
and filtering operations, they finally obtained 961 labeled vlog
data from 816 different people, with the number of depressed
and non-depressed people being 555 and 406 respectively. The
number of training set, validation set and test set of the D-Vlog
dataset were 647, 102 and 212 respectively, i.e. the allocation
ratio was 7:1:2.

4.2. Experimental Setup

In this paper, pytorch framework [23] is adopted to implement
our model. The training, validation and testing operations of
the model are carried out on NVIDIA PCIE A100 graphics card
with 40G memory. The Adam optimizer [24] is used to opti-
mize the weight update of the model, and the batch size, epoch,
learning rate, weight decay, and eps of the Adam optimizer are
set to 32, 30, 1e-4, 5e-4, and 1e-8, respectively. In the BiLSTM
models for acoustic and visual modalities, we implement a 6-
layer bidirectional with 200-dimensional hidden states. And the
number of output channels of the multiscale convolution kernel
is 512. In addition, we leverage the early stop mechanism to
train the model to avoid overfitting, and the patience is set to
4. For the testing phase, the weighted average precision, recall,
and f1 score are used to comprehensively evaluate the perfor-
mance of the models.

4.3. Performance Evaluation on D-vlog Dataset

To verify the validity of our proposed JAMFN model, the per-
formance of the JAMFN model is compared with the 10 bench-
mark models proposed by Yoon et al [18]. Table 1 reports
the performance of the JAMFN model and other benchmark
models on the D-vlog dataset. The weighted average preci-
sion, recall, and f1 of the JAMFN model reach 68.18 (×10−2),
68.39 (×10−2), and 68.25 (×10−2), respectively. In compar-
ing the experimental results, traditional machine learning meth-
ods (e.g., LR, SVM, and RF) performe unsatisfactorily due to
their poor ability to fit nonlinear data, and JAMFN naturally out-
performed the traditional machine learning models easily. Al-
though deep learning models (e.g., BiLSTM, TFN, and Depres-
sion Detector) all outperform traditional machine learning mod-
els, their depression detection performance is also inferior to the
JAMFN model. Further, the TAMFN model proposed by Li et
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Table 1: Performance of our approach with all benchmark mod-
els on the D-vlog dataset.

Model Precision Recall F1-Score
LR 54.86 54.72 54.78

SVM 53.10 55.19 52.97
RF 57.69 58.49 57.84

KNN-Fusion 57.86 59.43 54.25
BLSTM 60.81 61.79 59.70

TFN 61.39 62.26 61.00
Fusion Concat 62.51 63.21 61.10

Fusion Add 59.11 60.38 58.11
Fusion Multiply 63.48 64.15 63.09

Depression Detector [18] 65.40 65.57 63.50
TAMFN [19] 66.02 66.50 65.82

JAMFN (proposed) 68.18 68.39 68.25

Table 2: Importance analysis of multi-scale generation (MG)
module. ’-’ is the removal of the multiscale generation module
from the JAMFN model, while ✓ indicates the reservation of
the module.

MG Module Precision (×10−2) Recall (×10−2) F1-Score (×10−2)
- 62.73 63.20 62.83
✓ 68.18 68.39 68.25

al. outperformed all benchmark models, while our model sim-
ilarly outperformed the TAMFN model, with our weighted av-
erage of precision, recall, and f1 improving by 3.2%, 2.8%, and
3.6%, respectively, over the TAMFN model. From the compar-
ison experiments, it is demonstrated that our proposed JAMFN
model achieves the best performance in depression detection,
indicating that the JAMFN model can mine more behavioral in-
formation related to depression.

4.4. Ablation Studies

In this subsection, we first explore the effect of different combi-
nations of convolutional kernels, then, analyze the effectiveness
of the JAF module, and finally, investigate the effect of lever-
aging different BackBones in the JAMFN model on the model
performance.

Study on multi-scale generation module. In Table 2, we
compare the model performance of removing and retaining the
multi-scale generation (MG) module in the JAMFN model to
explore the importance of the MG module. The experimen-
tal results show that the model with the MG module removed
performs relatively poorly, the reason is that it lacks the fine-
grained multi-scale features provided by the MG module, which
proves the effectiveness of the MG module.

Study on the effect of convolution kernel size in MG
module. We perform ablation experiments on multi-scale gen-
eration (MG) module to explore the effect of convolution kernel
size. The results in Table 3 report that when the MG module
lacks convolutional kernels of size 5, it makes the model per-
form the worst, which indicates that a large size convolutional
kernel is more important. That is, a larger convolutional ker-
nel has a larger field of perception and can capture more global
features.

Study on JAF module. To justify our design of JAF mod-
ule, we perform ablation experiments on feature fusion. Specif-
ically, we take the JAF module and compare it with Add [25],
Multiply [26], and Concat [27], three common feature fusion
operations. More precisely, we simply replace the JAF module
in the JAMFN model with Add, Multiply and Concat for feature

Table 3: The Effect of Convolution Kernel Size in MG Module.

Module Precision (×10−2) Recall (×10−2) F1-Score (×10−2)
w/o k=1 64.53 65.09 64.43
w/o k=3 66.02 66.50 65.82
w/o k=5 60.18 60.84 60.28

Table 4: Comparisons between Different Feature Fusion Oper-
ations.

Operation Precision (×10−2) Recall (×10−2) F1-Score (×10−2)
Add 63.42 59.43 59.21

Multiply 61.09 61.32 61.18
Concat 65.22 63.20 63.40

JAF 68.18 68.39 68.25

fusion operations, respectively. Table 4 reports the performance
of the different feature fusion approaches, which demonstrates
that using the JAF module outperforms the other feature fusion
operations, indicating that the JAF module can encode fused
features more efficiently.

5. Conclusions
In this paper, we propose the Joint Attention Multi-Scale Fu-
sion Network (JAMFN) for vlog-based depression detection.
The JAMFN model mines the fine-grained behavior of multi-
ple modalities through the multiscale generation module, while
the JAF module is used to extract the temporal importance be-
tween modalities to guide the fusion of modal pairs at multiple
scales. We evaluate the performance of the proposed model on
the D-vlog dataset, and the experimental results show that the
proposed method is effective. Moreover, the results of the abla-
tion experiments illustrate that the multi-scale generation (MG)
module and the JAF module have a positive impact on the de-
pression detection ability of the JAMFN model.

Although the JAMFN model achieves the best performance
on the D-Vlog dataset, there is still much room for improve-
ment here. Since the D-Vlog dataset is subjectively labeled by
humans, it is inevitable that mislabeling will occur, and these
mislabeling samples may firstly, overfit the model and secondly,
affect the model to learn effective features. Therefore, in future
work, we will focus on how to suppress the influence of the mis-
labeling samples in the training samples and thus improve the
learning efficiency of the model.
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