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Abstract

Audio-visual speech enhancement (AV-SE) aims to enhance de-
graded speech along with extra visual information such as lip
videos, and has been shown to be more effective than audio-only
speech enhancement. This paper proposes further incorporat-
ing ultrasound tongue images to improve lip-based AV-SE sys-
tems’ performance. Knowledge distillation is employed at the
training stage to address the challenge of acquiring ultrasound
tongue images during inference, enabling an audio-lip speech
enhancement student model to learn from a pre-trained audio-
lip-tongue speech enhancement teacher model. Experimental
results demonstrate significant improvements in the quality and
intelligibility of the speech enhanced by the proposed method
compared to the traditional audio-lip speech enhancement base-
lines. Further analysis using phone error rates (PER) of au-
tomatic speech recognition (ASR) shows that palatal and ve-
lar consonants benefit most from the introduction of ultrasound
tongue images.
Index Terms: speech enhancement, audio-visual, ultrasound
tongue image, knowledge distillation

1. Introduction
Speech enhancement (SE) is a crucial research problem in
speech signal processing that aims to improve the quality and
intelligibility of speech signals corrupted by various types of
distortions [1]. Numerous SE methods have been proposed to
assist the application in several areas, such as speech or speaker
recognition, hearing aids, and mobile communication [2]. Clas-
sical audio-only speech enhancement (AO-SE) approaches have
been successful in estimating underlying target speech signals
using either knowledge-based modeling [3, 4], or data-driven
paradigms such as deep learning [5, 6]. Since speech percep-
tion is inherently multimodal, particularly audio-visual, recent
studies have investigated using visual cues as well as acous-
tic signals for SE [7]. This approach, known as audio-visual
speech enhancement (AV-SE) [8–10], is more effective than
simple AO-SE methods as visual cues are essentially unaffected
by the acoustic environment.

Lip videos are the most commonly used visual cues for AV-
SE due to their easy availability. Besides, they can also help
disambiguate phonetically similar sounds since they record the
movement of external articulators involved in speech produc-
tion. A deep AV-SE model based on convolutional neural net-
works (CNNs) [11] was proposed to separate a speaker’s voice
by predicting both the magnitude and the phase of the target
signal given lip regions. A novel framework [12] incorporated

* Corresponding Author. This work was partially funded by the
Fundamental Research Funds for the Central Universities.

lip information for speech enhancement by integrating a genera-
tive adversarial network (GAN) to generate high-quality speech.
Another study [13] proposed an AV-SE system that achieved
impressive performance using a multi-layer fusion model with
a multi-head cross-attention mechanism to fuse audio and lip
features.

Speech production is a complex process relying on multi-
ple articulators, including the jaw, lips, teeth, and tongue. Using
lip videos for speech processing tasks like SE often has limita-
tions due to the lack of descriptions on internal articulators, e.g.,
tongue and velar. To address this issue, some studies have sug-
gested employing internal articulation features captured using
medical imaging techniques such as magnetic resonance imag-
ing (MRI) [14] and ultrasound tongue imaging (UTI) [15], to
provide complementary data. Compared to MRI, UTI is rel-
atively cheap, non-invasive, and can provide high-resolution
images. UTI uses a real-time B-mode ultrasound transducer
placed under the speaker’s chin to visualize a midsaggital or
coronal view of the tongue during speech production. Ultra-
sound tongue images have been used in various speech pro-
cessing tasks, such as speech recognition [16, 17] and speech
reconstruction [18, 19]. However, their potential for speech en-
hancement tasks has yet to be fully explored, creating a research
gap that could be addressed by leveraging the advantages of ul-
trasound tongue images.

However, obtaining ultrasound tongue images is more com-
plex than collecting lip videos due to the requirement of extra
equipment. Therefore, this paper proposes introducing ultra-
sound tongue information to an audio-lip SE model through
knowledge distillation. Specifically, an audio-lip-tongue SE
teacher model with U-Net-based [20] structure is first proposed
to incorporate ultrasound tongue images with lip videos to as-
sist speech enhancement. An audio-lip SE student model is
then guided to learn ultrasound tongue information from a pre-
trained audio-lip-tongue SE teacher model via multiple loss
functions. At inference time, the proposed audio-lip SE model
is fed with noisy speech and lip videos, and the ultrasound
tongue images are not necessary anymore. Experimental re-
sults demonstrate that the proposed method can generate speech
with improved quality and intelligibility compared to conven-
tional audio-lip baselines trained solely with clean speech su-
pervision. Moreover, a notable reduction in phoneme error rate
(PER), specifically for palatal and velar consonants, can be wit-
nessed while applying automatic speech recognition (ASR) for
transcription.

2. Proposed Method
Under most circumstances, only a noisy speech and its corre-
sponding lip video can be obtained as reference data since ac-
quiring ultrasound tongue images is not as straightforward as

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

844 10.21437/Interspeech.2023-780



A
rt

ic
u

la
ti

o
n

 
C

o
n

v 
B

lo
ck

A
rt

ic
u

la
ti

o
n

 
C

o
n

v 
B

lo
ck

C
o

n
ca

t
Li

n
ea

r

C
o

n
ca

t
Li

n
ea

r

C
o

n
ca

t
Li

n
ea

r

A
u

d
io

 
C

o
n

v 
B

lo
ck

Fe
at

u
re

 
C

o
n

v 
B

lo
ck

C
o

n
ca

t

C
o

n
ca

t

C
o

n
ca

t

···

···

···

Fe
at

u
re

 
D

eC
o

n
v

B
lo

ck

A
u

d
io

 
C

o
n

v B
lo

ck

···

Featu
re 

C
o

n
v B

lo
ck

A
rticu

latio
n

 
C

o
n

v B
lo

ck

C
o

n
cat

C
o

n
cat

C
o

n
cat

Featu
re 

D
eC

o
n

v
B

lo
ck

···

(a). Audio-Lip-Tongue SE Teacher Network (b). Audio-Lip SE Student Network
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Figure 1: Details of the proposed method. The dashed arrows indicate the loss function. (a) shows the structure of the Audio-Lip-
Tongue SE teacher model; (b) shows the structure of the Audio-Lip SE student model introducing ultrasound knowledge with knowledge
distillation method.

capturing lip video. Hence, we propose enabling an audio-lip
SE student model to assimilate ultrasound tongue information
from a pre-trained audio-lip-tongue SE teacher model through
knowledge distillation. Details are illustrated in Fig. 1 and will
be introduced in this section.

2.1. Audio-Lip-Tongue SE Teacher Model
Inspired by previous study [12, 21], we propose a U-Net [20]
style teacher model with noisy speech, lip videos, and ultra-
sound tongue images as input as shown in Fig.1a. The model
can be roughly divided into a multi-modal encoder and a de-
coder connected by a long short-term memory (LSTM) based
embedding block.

The encoder contains an articulation stream and an audio
stream. For the articulation stream, we process both lip and
tongue image sequences to obtain fused representations for de-
scribing articulation. Specifically, pixel-wise mean and stan-
dard deviation are computed for each utterance, repeated, and
then appended as extra channels to the ultrasound and lip se-
quences [19]. The resulting input is of dimension 3 × T ×
H × W , where H and W are the height and width of the lip
and tongue images. The input is first processed by an articu-
lation convolutional block consisting of three strided 3D-CNN
layers, each followed by batch normalization and Leaky-ReLU.
The resulting features are then flattened along the time axis and
processed by seven feature convolutional blocks. Each block in-
volves a series of 2D-CNN layers with frequency pooling layers
to reduce the frequency while preserving the time dimension.
The lip and tongue features are concatenated at each layer and
then passed through a linear layer to obtain the fused articula-
tion representations with reduced size.

For the audio stream, the encoder takes as input the real and
imaginary parts of the noisy complex spectrogram with dimen-
sion 2 × F × T , where F and T are the frequency and time
dimensions of the spectrogram. Each time-frequency bin con-
tains the real and imaginary parts of the corresponding complex
spectrogram value [21]. The input is first processed by an au-
dio convolutional block comprising two strided 2D-CNN layers

and then by seven feature convolutional blocks as used in the
articulation stream. Finally, the audio representation are con-
catenated with the fused articulation representations layer by
layer to obtain the ultimate multi-modal representations for SE.

Two LSTM layers are inserted between the encoder and de-
coder to better model temporal dependencies. The decoder with
skip connection exhibits a symmetric structure concerning the
encoder, whereby the convolutional layer is substituted with an
upconvolutional layer, and the frequency pooling layer is re-
placed by a frequency upsampling layer. The input of each de-
coder layer is the concatenation of the output of the previous
layer and the multi-modal representations given by the corre-
sponding encoder layer. The final output feature map is fed
through an activation layer to predict a complex mask with the
same dimensions as the input noisy spectrogram. The result-
ing mask is applied to the noisy input through complex multi-
plication, yielding an enhanced complex spectrogram which is
transformed back into the time domain via an inverse short-time
fourier transform (iSTFT).

The training criterion of the teacher model is to minimize
the following loss

LTeacher = LMask + αLSTFT , (1)
where LMask and LSTFT denote the mean square error (MSE)
losses of the mask and the complex spectrogram, respectively.
The hyper-parameter α is utilized to ensure both LMask and
LSTFT are scaled to the similar magnitude.

2.2. Audio-Lip SE Student Model
An audio-lip SE student model is proposed with the architecture
depicted in Fig.1b, where the input of tongue images is removed
compared with the teacher. To utilize tongue information even
in the absence of ultrasound tongue images during reference, we
employ knowledge distillation to train the student. Specifically,
in addition to the supervised training with the backbone losses
LMask and LSTFT described in Eq.(1), the student model also
receives supervision signals from the teacher. During forward
inference of the student and teacher networks, the output of
each layer is saved to compute the knowledge distillation loss
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Table 1: Evaluation results of the proposed model compared with baseline models. Best results are highlighted in bold.

Method SNR 2.5dB -2.5dB -7.5dB
Metrics SegSNR PESQ STOI SegSNR PESQ STOI SegSNR PESQ STOI

Noisy 0.2414 1.4285 0.8503 -3.1703 1.2283 0.7527 -5.9847 1.1298 0.6229
Gabby et al. 2018 [10] 4.8731 1.8260 0.8871 3.8721 1.6502 0.8566 2.6978 1.4590 0.8005
Hegde et al. 2021 [22] 3.6086 1.8756 0.8882 2.9790 1.6890 0.8603 2.0987 1.4863 0.8052

Hussain et al. 2021 [23] 6.1654 2.0388 0.9245 4.5055 1.7750 0.8867 2.8217 1.5424 0.8177
Proposed 9.0061 2.1073 0.9335 6.8343 1.8241 0.8911 4.6944 1.5858 0.8221

for each layer of the encoder, decoder, and LSTM embedding
blocks. For each layer, the MSE loss between the output fea-
tures of the teacher and the student is calculated following

LMSE
KD =

N∑

l=1

||F l
T − F l

S ||22, (2)

where N represents the number of layers, and F l
T and F l

S de-
note the output features of the lth layer of the teacher and stu-
dent model, respectively. We guarantee that the feature dimen-
sions of the corresponding layers in the teacher and student
models are identical.

The similarity-preserving knowledge distillation (SPKD)
loss [24, 25] is utilized to further supervise the student model.
The SPKD loss aims to achieve dimensional compression and
to transmit similarity information simultaneously by computing
pairwise similarity matrices. Given a mini-batch input, the fea-
ture map of the lth layer is represented as F l ∈ Rb×c×t×f ,
where b is the batch size, c is the number of output channels, t
is the number of frames, and f is the dimension of the feature
space. To account for potential interference of information from
different frames, the features are first segmentated on frame-
level and then flattened into two dimensions. The transformed
feature of the jth frame is denoted as F (l,j) ∈ Rb×f ′

, where
f ′ = c×f . The similarity matrice of each frame for the teacher
G

(l,j)
T and the student G(l,j)

S is calculated independently fol-
lowing [25]. The SPKD loss for the lth layer is then calculated
as the sum of the similarity distances across all frames. The
overall SPKD loss is determined by summing the SPKD loss of
each layer as follows

LSPKD
KD =

N∑

l=1

Ll
SPKD =

1

b2

N∑

l=1

T∑

j=1

||G(l,j)
T −G

(l,j)
S ||2F ,

(3)
where || · ||F is the Frobenius norm.

Therefore, to train the proposed audio-lip SE model, the
overall loss function can be written as
LStudent = LMask+αLSTFT +γ1LMSE

KD +γ2LSPKD
KD , (4)

where, α, γ1 and γ2 are all hyper-parameters used to ensure that
the loss functions are scaled to the similar magnitude.

3. Datasets and Implementation Details
3.1. Datasets
For our experiments, we utilized the TaL corpus [26], a multi-
speaker dataset containing ultrasound tongue imaging, optical
lip video, and audio for each utterance. Specifically, we em-
ployed 10,271 utterances from 73 speakers for training, and 810
utterances from 81 speakers for validation, where eight speakers
from the validation sets were unseen in the training set. The test
set included 1749 utterances from 73 seen speakers and 1407
utterances from 8 unseen speakers. The content of the three sets
was mutually exclusive from each other.

Noisy speech was generated by mixing noise with the clean

speech in the TaL corpus. During training, we introduced ten
different noise types as in [27]: eight noise recordings from the
DEMAND database [28] and two artificially generated noises,
namely speech-shaped noise and babble noise. These noise
types were added to the speech signal at three different signal-
to-noise (SNR) values (0dB, 5dB, and 10dB). For validation and
testing, we added five additional noises: living room, office,
bus, street cafe, and a public square. We used slightly higher
SNR values (-2.5dB, 2.5dB and 7.5dB) than the ones used dur-
ing training following previous work [27].

3.2. Implementation Details
The lip videos and ultrasound tongue images were processed
following the pipeline described in [19]. The resulting lip
videos and ultrasound tongue images were resized to 64× 128
and had a frame rate of 81.5 fps. For audio preprocessing, the
audio was downsampled to 16 kHz, and the STFT was com-
puted using a Hann window with a length of 512, a hop size of
196 and an FFT point number of 512 to match the frame rate
of the ultrasound. The resulting complex spectrogram had a di-
mension of 2× 257× T .

We employed the Adam optimizer with an initial learning
rate of 1e-3 for backpropagation. The learning rate decreased
by 0.1 once learning stagnated, i.e., the validation error did not
improve for ten epochs. The model was trained at utterance
level by randomly cropping all the samples in the mini-batch to
have the same number of frames as the shortest one.

4. Experimental Results
4.1. Overall Performance
Three recent AV-SE methods [10, 22, 23] whose source codes
were available online were used as baselines for comparison
with our proposed audio-lip SE model. When evaluating the
method [22], as a generated pseudo lip stream was adopted for
AV-SE in its original paper, we used the natural lip stream for a
fair comparison. Each baseline was trained on our constructed
dataset following the training strategy in its original paper. Seg-
mental signal-to-noise ratio (SegSNR), perceptual evaluation of
speech quality (PESQ), and short-term objective intelligibility
(STOI) were used as evaluation metrics. The results in Table
1 demonstrate that our proposed method outperforms all three
baselines in all evaluation metrics, indicating improved speech
quality and intelligibility1.

4.2. Ablation Studies
A series of ablation studies were conducted to provide fur-
ther evidence of the efficacy of incorporating ultrasound tongue
knowledge through the knowledge distillation method. The
outcomes are presented in Table 2. Specifically, the effec-
tiveness of the SPKD loss was demonstrated by removing the
loss function LSPKD

KD in Eq.4 (“w/o SPKD”). To demonstrate
the effectiveness of introducing ultrasound tongue information

1Speech samples are available at: https://zhengrachel.
github.io/UTIforAVSE-demo/
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Table 2: Evaluation results of the proposed model in ablation studies. Best results are highlighted in bold. Underline characters
indicate the sub-optimal results.

Method SNR 2.5dB -2.5dB -7.5dB
Metrics SegSNR PESQ STOI SegSNR PESQ STOI SegSNR PESQ STOI

Proposed 9.0061 2.1073 0.9335 6.8343 1.8241 0.8911 4.6944 1.5858 0.8221
w/o SPKD 8.9927 2.1133 0.9328 6.8251 1.8218 0.8892 4.6442 1.5802 0.8194

w/o KD (Audio-Lip) 8.9741 2.0841 0.9304 6.8073 1.8030 0.8854 4.6314 1.5604 0.8142
Audio-Lip-Tongue 9.0315 2.1122 0.937 6.9267 1.8322 0.8987 4.8707 1.5973 0.8394

Audio-Tongue 8.8509 2.0990 0.9321 6.7223 1.8133 0.8901 4.6153 1.5631 0.822
Audio-Only 8.6748 1.9872 0.9215 6.4224 1.7088 0.8661 4.0888 1.4773 0.7739

Table 3: PERs (%) of different phoneme categories for clean speech, noisy speech, and the speech enhanced by different methods.
Consonant phonemes are divided according to the place of articulation. Best results are highlighted in bold. Underline characters
indicate the sub-optimal results. The numbers in parentheses show relative PER reduction (%) compared with the audio-only method.

Methods Silence Vowels Consonants

Labial Labio-
dental Dental Alveolar Alveo-

palatal Palatal Velar Glottal

Clean 0.58 3.09 2.54 1.24 2.18 2.96 1.94 1.88 2.69 2.46
Noisy 25.10 46.10 41.58 37.44 43.43 41.74 33.03 37.53 37.10 46.35

Audio-Only 10.54 31.97 33.54 34.03 31.02 33.46 14.8 30.78 27.37 33.76
Audio-Lip 7.71 27.67 27.97 31.82 24.78 30.29 12.48 30.33 26.48 30.42

(26.85) (13.45) (16.61) (6.49) (20.12) (9.47) (15.68) (1.46) (3.25) (9.89)
Audio-Lip-Tongue 6.34 20.22 24.95 32.15 22.40 25.61 11.13 23.55 17.35 25.09

(39.84) (36.75) (25.61) (5.52) (27.79) (23.46) (24.80) (23.49) (36.61) (25.68)
Proposed 7.34 25.31 26.42 30.56 25.44 29.35 11.17 26.59 22.85 29.87

(30.36) (20.83) (21.23) (10.20) (17.99) (12.28) (24.53) (13.61) (16.51) (11.52)

via the knowledge distillation method, an audio-lip SE model
was trained solely with LMask and LSTFT (“w/o KD (Audio-
Lip)”). Additionally, for reference, we included results from the
well-trained audio-lip-tongue SE teacher model together with
the audio-tongue and audio-only SE models built by removing
the lip or the whole articulation inputs in the teacher model.

Table 2 shows that while the audio-lip-tongue SE teacher
model achieved the best performance, the proposed method won
the second place on most metrics. “w/o SPKD” achieved re-
sults inferior to the proposed method except for SNR=2.5dB,
indicating the effectiveness of introducing the SPKD loss par-
ticularly in low SNR scenarios. The outcomes of the proposed
method surpassed those of the “w/o KD (Audio-Lip)”, suggest-
ing that the knowledge distillation method effectively incorpo-
rates a portion of the articulation knowledge derived from the
ultrasound tongue. Furthermore, the performance of the pro-
posed method outperformed that of both the audio-tongue and
audio-only models, highlighting the effectiveness of combining
multi-modal sources of articulation knowledge.

4.3. Analysis on Phoneme Categories
To further study the gains of incorporating ultrasound tongue
images, we employed an ASR engine to analyze the enhanced
speech’s PERs of different phoneme categories. An ASR API
provided in ESPNet2 [29] was utilized to transcribe the en-
hanced speech. Each enhanced utterance was forcibly aligned
with its transcription by the Montreal Forced Aligner (MFA)3

[30] tool, consequently obtaining a time-aligned phoneme se-
quence. Ground truth phoneme sequences were obtained by
aligning clean utterances with their corresponding texts using
the MFA tool. The recognized and ground truth phoneme se-
quences were further aligned by minimizing the edit distance,
and the PERs for different phoneme categories could be cal-

2https://github.com/espnet/espnet_model_zoo
3https://github.com/MontrealCorpusTools/

Montreal-Forced-Aligner

culated. Phonemes were categorized according to the English
(UK) MFA dictionary v2 0 04.

The results are shown in Table 3. Comparing audio-lip
and audio-only methods, we can see that after introducing lip
information for SE, PERs reduced significantly for some lip-
related phonemes, such as silence, labials and dentals. How-
ever, for palatal and velar consonants, the relative PER reduc-
tions were quite small which indicates the limitations of us-
ing only lip videos as articulation information. After further
incorporating ultrasound tongue images, the audio-lip-tongue
method achieved much more uniform PER reductions among
phoneme categories than the audio-lip method. For palatals,
velars and vowels whose articulations were mainly determined
by internal tongue movement, their relative PER reductions im-
proved significantly from 1.46% to 23.49%, from 3.25% to
36.61% and from 13.45% to 36.75%, respectively. Although
not using tongue images at inference time, our proposed method
also achieved lower PERs than the audio-lip method for most
phoneme categories, especially for palatals, velars and vowels,
indicating the effectiveness of incorporating tongue information
through knowledge distillation.

5. Conclusion
This paper proposes incorporating ultrasound tongue images via
knowledge distillation for AV-SE systems. An audio-lip-tongue
SE model is first trained and used as a teacher to guide the
training of an audio-lip SE student model through knowledge
distillation. Our proposed method demonstrates superior per-
formance over the conventional AV-SE baselines. Furthermore,
the evaluated PER results indicate that lip and tongue modalities
provide valuable articulation knowledge. Investigating the fea-
sibility of constructing pseudo ultrasound tongue features from
audio and lip video modalities to assist speech processing tasks
will be our future work.

4https://mfa-models.readthedocs.io/en/latest/
dictionary/English/
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