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Abstract
Many young children prefer speech based interfaces over text,
as they are relatively slow and error-prone with text input. How-
ever, children ASR can be challenging due to the lack of tran-
scribed children speech corpora. In this paper, we investigate
a voice conversion method based on WORLD vocoder to gen-
erate childlike speech for data augmentation. Since noise may
lead to severe artifacts in converted speech, we also investigate
using speech enhancement to improve the quality of converted
speech. On a publicly available children speech corpus, we
evaluated the performance of the proposed data augmentation
method against existing data augmentation methods based on
linear prediction coefficients. Our proposed data augmentation
method substantially outperformed the prior work on children
ASR. Additionally, on a task to classify the speaker, adult or
child, data generated using our proposed method was shown to
mimic real children better compared to the reference methods.
Index Terms: ASR, child-adult speaker classification, data
augmentation, voice conversion, speech enhancement

1. Introduction
Children are an important set of voice search users. Due to
children’s limited typing and spelling skills, voice interfaces for
search – powered by automatic speech recognition (ASR), are
attractive to them [1]. However, children speech data is not pub-
licly available in many languages. Without training on children
speech, the ASR performance is typically low when tested by
young users, especially for ages under 12 [2]. Thus, correctly
recognizing children’s voice queries is a challenging task.

Children speech is different from adult speech in many as-
pects, such as fundamental frequencies, formants, spectral vari-
ability, and vowel lengths. Several techniques have been pro-
posed to address the mismatches in the acoustic characteristics
of children and adults. Vocal tract length normalization (VTLN)
[3] compensates the different vocal tract lengths by warping the
frequency spectrum in the filterbank analysis. Spectral warping
techniques [4, 5, 6] shift the formants by scaling the spectral
envelope of an audio signal to approximate the distribution of
formants, based on methods such as modification of linear pre-
diction coefficients. VTLN and spectral warping can be used
to simulate the formants of children. However, mismatches in
other characteristics of children speech such as fundamental fre-
quencies (F0) and harmonic structure of high F0 speech can not
be handled using only VTLN or spectral envelope warping.

Voice conversion aims at generating synthetic speech that
perceptually resembles children speech. This technique has
been investigated using deep learning based techniques, such
as CycleGAN [7, 8]. Deep-learning-based methods require
children speech as training data, which is scarce in most

languages. There are also voice conversion methods using
signal-processing-based vocoders, such as STRAIGHT [9] and
WORLD [10]. These vocoders have the potential of converting
adult speech to be sufficiently childlike for data augmentation,
and they do not require children speech for training. Yet, no
prior work has used similar methods to improve children ASR
to the best of our knowledge.

In this paper, we propose data augmentation for children
ASR using a voice conversion method to generate childlike
speech based on WORLD vocoder, which includes a series
of signal processing algorithms [11, 12, 13] for speech anal-
ysis and synthesis. In order to map adult speech characteris-
tics into children ones, modifications are made based on a chil-
dren acoustic study [14]. The spectral envelopes are warped
(Section 2.2.1); the fundamental frequencies are shifted (Sec-
tion 2.2.2); the vowel lengths are stretched (Section 2.2.3).
For training data recorded in real-world scenarios, background
noise in the audio signal may lead to a bad estimation of the
fundamental frequencies and spectral envelopes of the speech
[11]: In these cases, direct voice conversion may lead to strong
artifacts that cause the converted speech to deviate from the
originally spoken words. Thus, we also propose using speech
enhancement [15, 16] to separate speech from the background
noise before performing the voice conversion (Section 2.1).

In our experiments (Section 3), the proposed data augmen-
tation method is evaluated on two tasks. Firstly, we set up an
ASR experiment to investigate the Word Error Rates for chil-
dren speech, with the augmented data included in the training.
Secondly, we set up an child-adult speaker classification task
as an objective measurement of the resemblance between the
augmented data and real children data. Finally, we present our
concluding remarks in Section 4.

2. Method

We propose a method to convert adult speech to childlike
speech. For simplicity, we call the process ”childrenization”
in the rest of the paper. The motivation for childrenization is
to improve children ASR when only adult speech corpora are
available for training. An overview of the proposed childreniza-
tion method is illustrated in Figure 1. Speech enhancement is
performed to reduce background noise before the childreniza-
tion process, including analysis, modification, and synthesis.
The analysis and synthesis follow the framework of WORLD
vocoder [10, 12], and the modification follows an acoustic anal-
ysis about the developmental changes in children speech [14].
The code and childrenized examples are available at https:
//github.com/zhao-shuyang/childrenize.
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Figure 1: An overview of the proposed childrenization method.

2.1. Speech enhancement

The proposed childrenization algorithm relies on accurate F0
estimation. Background noise results in bad F0 estimation and
thus, cause synthesized speech to be severely degraded. De-
graded speech sometimes deviates from the spoken words in the
original signal. To address this issue, we propose using speech
enhancement to denoise speech signals before performing chil-
drenization.

In this study, we follow the work of [16], which associates
its work with a publicly available code repository 1. It pro-
poses a speech enancement method based on the estimation of
a priori signal-to-noise ratio (SNR). Here, a temporal convolu-
tional neural network (TCN) [17] is trained to map the magni-
tude spectrogram into the cumulative probabilities of SNR cor-
responding to each frequency bin and each time step in the spec-
trogram. SNR is restored from the cumulative probabilities us-
ing the quantile function based on their means and variances in
each frequency bin in the training dataset. Wiener filter is used
to derive the denoised speech spectrogram from the estimated
SNR. For details, we refer the reader to the original work [16].

2.2. Childrenization

To match the characteristics of children speech observed in [14],
we modify adult speech in three aspects: formants, pitch and
vowel lengths. We aim at these speech characteristics random-
ized according to statistics for ages 5 to 12. The modification of
each aspect is introduced in one of the following subsections.

2.2.1. Spectral warping

Perceptually, vowels are described by their formants, peaks in
the spectral envelope. In order to match the formant characteris-
tics of children, a modification is made to the spectral envelope
of adult speech. The estimation of the spectral envelope is based
on CheapTrick algorithm [11]. Spectral warping is performed
on an estimated spectral envelope, mapping a frequency f into
a new frequency f ′. The proposed spectral warping function is
defined based on our observations in [14].

The scaling factors of the first three formants from male

1https://github.com/anicolson/DeepXi

adult to male children are similar, accoding to the statistics
shown in [14, Figure 6]. Thus, we use a linear spectral fre-
quency warping function for the whole frequency range as
f ′
male = αf , where a frequency scaling factor α is randomly

chosen from the range [1.2, 1.4].This roughly corresponds to
the formant frequency scaling factor statistics of male children
from ages 5 to 12.

The formant scaling factors from female adult to female
children appear lower as formant frequency increases. We pro-
pose using a piece-wise linear warping function, similar to
[3, 6]. A low-cut frequency Flow and a high-cut frequency
Fhigh divide the frequency from zero to Nyquist frequency into
three pieces. Each piece has its own slope value and the piece-
wise spectral warping function is

f ′
female





βlowf, if f ≤ Flow

F ′
low + βmid(f − Flow), if Flow < f ≤ Fhigh

F ′
high + βhigh(f − Fhigh), if f > Fhigh.

(1)
A mid-frequency range slope βmid is randomly set in the

range [1.1, 1.25]. The low-frequency range slope βlow is set to
the square of βmid, as βlow = β2

mid. As a result, the warp-
ing factor f ′

female/f decreases from β2
mid at Flow to approx-

imately βmid at Fhigh. Following this, the Flow and Fhigh

are mapped to F ′
low and F ′

high, respectively. In the high-
frequency range, the slope value is set to βhigh = ((Fs/2) −
(F ′

high))/((Fs/2)− (Fhigh)) closing the range of warped fre-
quency up to Nyquist frequency Fs.

We use the estimated mean F0 within an utterance to deter-
mine the gender of the speaker. We observed in [14, Figure 3a]
that the gender of an adult speaker could be roughly separated
using 160Hz as a threshold. The utterance with an estimated
mean F0 above the threshold is considered to be made by a fe-
male adult, otherwise a male adult.

2.2.2. Pitch shifting

We made modifications to adult speech on the aspect of the
pitch, which is quantified by the fundamental frequency (F0).
The modifications are based on [14, Figure 3a], which illus-
trates the mean and standard deviation of the F0 from age 5 to
age 18. We randomly set a target of the mean F0 for each utter-
ance, p̄target, from the range [240, 300] Hz. This value roughly
corresponds to the mean F0 range within one standard deviation
for the ages 5 to 12.

For each frame, the F0 is estimated using the Harvest al-
gorithm [13], denoted as pestimate. The estimated mean F0 of
the utterance, p̄estimate, is computed excluding non-harmonic
frames and frames with an estimated F0 lower than 50 Hz. An
estimated F0 lower than 50 Hz is considered to be from non-
speech sound sources or due to estimation error. The target F0
of a frame, ptarget is obtained by shifting the original F0 by
the difference between the target mean and the original mean:
ptarget = pestimate + (p̄target − p̄estimate).

Most prior work, including VTLN [3] and LPC spectral
warping [4, 5, 6] do not deal with pitch. We note that children’s
high pitch can largely affect the acoustic features of vowels.
Figure 2 illustrates the log energies of 40 mel bands from a sam-
ple vowel frame corresponding to an adult male speech signal,
its spectral-warped version, and its spectral-warped and pitch-
shifted version. The harmonic structures in the low-pitch sig-
nals are smoothed out by the mel filters, whereas the harmonic
structures are visible in the pitch-shifted version. The interval
between harmonics proportionally increases with the F0. With
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Figure 2: Sample mel-weighted frequency bins of a vowel frame
in an adult male speech signal, its spectral-warped version, and
its spectral-warped and pitch-shifted version. The spectral en-
velope has been linearly warped by a factor of 1.3 and the F0
has been shifted from about 120 Hz to 250 Hz.

a high F0, the intervals between harmonics can be larger than
the mel filter bandwidth. As a result, the harmonic structures
are not smoothed out below bin number 22 in the pitch-shifted
signal.

2.2.3. Vowel length stretching

Lastly, a modification is made to the vowel lengths. According
to [14, Figure 1a], the average lengths of vowels decrease from
age 5 to age 12, from 280 ms to 180 ms. Based on this obser-
vation, we randomly set a vowel length stretching factor γ in
the range [1.1, 1.4]. The change of vowel lengths can have an
impact on languages that distinguish vowel phonemes by their
lengths.

In the implementation, an utterance is divided into seg-
ments based on the change points of harmonicity, which is
estimated using the F0 estimation algorithm [13]. The vowel
length stretching factor γ is used to scale the hop length of har-
monic segments during the synthesis, while the non-harmonic
segments remain unspoiled.

3. Experiments
3.1. Experimental setup

3.1.1. Data

Samrómur [18, 19] is the only freely available children speech
recognition corpus to the best of our knowledge, thus our
evaluation is based on this Icelandic dataset. As for training
data, we build our models using the freely available Icelandic
Malrómur speech recognition dataset [20], which contains only
adult speech. Background sound sources exist in some of the
utterances for both Samrómur and Malrómur. We split the
Malrómur data into train, development and test sets; and release
the splits for future comparisons.

In terms of size, the Samrómur dataset contains 127.4 and
1.8 hours as the training and test sets respectively. In addition to
the full Sarmómur dataset, we also take a 5.4 hours subset from
Samrómur training set for experiments. The experiment simu-
lates a situation where a small amount of children speech data is
available for training. Malrómur datasets have 109.0, 13.4 and
13.6 hours in the training, development and test sets respec-
tively. Henceforth, we refer to Samrómur as the Real Children

corpus (RC) and Malrómur as Real Adult corpus (RA). The 5.4-
hours subset of the Samrómur training set is denoted by RC5.

3.1.2. Training data augmentation

As described above, the experiment involves a real adult corpus
(RA) and a real children (RC) corpus. Each evaluated data aug-
mentation method is performed on a copy of the training split of
RA. The evaluated data augmentation methods are listed below.

RAL denotes RA spectral-warped based on a linear predic-
tion coefficient (LPC) method [4], using its open-source im-
plementation. The warping factor of RAL is set to −0.05,
which is the best-performing value for children ASR in [4, Ta-
ble 3]. RAC denotes childrenized RA. RAD denotes denoised
RA. RADL is used for LPC spectral-warped RAD. RADC is
used for childrenized RD. RADS denotes RAD processed using
only the spectral warping part of the proposed method. RADS
is used to compare with RADL, since both of them modify only
the spectral envelope. RADN denotes RADS along with the
proposed pitch shifting, or RADC without the proposed vowel
stretching. It is used to analyze the effect of pitch shifting and
vowel stretching.

3.1.3. Automatic speech recognition system

The main objective of the proposed data augmentation method
is to improve ASR performance for children’s speech. We build
a Hybrid HMM/TDNN acoustic models using the Kaldi toolkit
[21]. The acoustic model training follows the Kaldi’s WSJ
s5 recipe with iVectors. For language modelling, we train a
Kneser-Ney trigram language model using the SRILM toolkit
[22]. The language models also utilize options to prune and
limit word length sizes for training. The language models are
trained using Icelandic Gigaword corpus 2021 [23].

3.1.4. Child-adult speech classification system

Child-adult speech classification (CASC) task is used to mea-
sure how childrenization mimics real children. Childrenized
adult utterances are used as instances of children to train a
CASC model. If the childrenzied data well mimic real children,
the model should be able to correctly classify a decent amount
of real children utterances, meanwhile confusing little adult ut-
terances. Unweighted accuracy (UA) is used as the evaluation
metric for CASC.

A two-dimensional convolutional neural network (CNN) is
used to classify if the speaker of an utterance is an adult or a
child. The CNN architecture used in this work is similar to
VGG-M [24], widely used for image classification and speech-
related applications [25]. The input features of the neural net-
work are 300 frames long 80-dimensional mel-spectrogram im-
ages computed with a frame length of 30 ms and a hop length
of 10 ms using Librosa [26]. The CNN model maps each mel-
spectrogram into a 400 vector speaker embedding.

Given a test utterance, the model predicts the probability of
the test utterance belonging to a child and an adult speaker. We
select the score value with the highest probability and assign the
test utterance to either a child or adult speaker. Since the input
of the classification model is 3 seconds audio clip, we keep only
utterances that are larger than 3 seconds in the test sets. Thus,
the number of test files is reduced from 1714 to 1174.

3.2. Experimental Results

We present the Word Error Rates (WER) from our ASR ex-
periments and Unweighted Accuracy (UA) on our child-adult
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Table 1: Word Error Rates (WER) in ASR and Unweighted Ac-
curacy (UA) of the Child Adult Speaker Classification (CASC)
on the test splits of Malromur, a real adult speech corpus, and
Samromur, a real children speech corpus. For details refer to
Section 3.1.1 and Section 3.1.2.

ASR WER CASC UA
Training Adult Child

RA (109-hrs real adult) 9.0 51.3 -
+ RAL (LPC) 8.8 46.5 17.9
+ RAC (childrenized) 9.0 40.7 52.7
+ RADL (denoised + LPC) 7.9 44.6 33.6
+ RADS (denoised + s. w.) 8.3 43.6 57.4
+ RADN (denoised + s. w. + p. s.) 8.4 38.5 63.0
+ RADC (denoised + childrenized) 8.8 36.3 68.8
+RC5 (real children 5.4-hrs subset) 8.9 28.7 89.4
+ RC5+RADC 8.7 26.5 91.8
RC (127-hrs real children) 22.7 16.6 -
RA + RC (236 hrs) 9.1 17.6 99.6
Wav2Vec2.0 (1001 hrs) [27] 5.7 9.4

Table 2: Confusion matrix on the child-adult speaker classifica-
tion task for models developed using the reference (RA+RADL)
and the proposed (RA+RADC) data augmentation methods.

Training Child
RADL

Adult
RA

Child
RADC

Adult
RA

Testing Hyp
Child

Hyp
Adult

Hyp
Child

Hyp
Adult

Ref Child 99 1075 529 645
Ref Adult 4134 5905 736 9303

speaker classification in Table 1.
The last three rows of the table display the oracle num-

bers achievable when domain-matched real children (RC) data
is used for training our ASR or the Icelandic Wav2Vec2.0 [27]
system, which was trained on 1001 hours of Icelandic speech in-
cluding children speech. Obtaining such an amount of labelled
children speech is difficult for most languages, and hence we
focus on the scenario where only real adult data is available. As
a naı̈ve baseline, we train our model on adult speech (RA) and
test on children speech.

Evaluating ASR on the children’s test set, we observe 9.3%
relative improvement over the baseline when augmenting with
LPC-based generated data (RA+RAL), which has been earlier
used to augment data for such children speech tasks [4]. In
comparison to the same test set, we observe larger gains (20.6%
relatively) when augmenting with our childrenization scheme
(RA+RAC), showing that the latter scheme is better.

Next, we also experiment denoising the input adult
data before childrenization (refer Fig. 1). The proposed
speech enhancement, or denoising, substantially improves the
childrenization-based scheme and it also slightly improves the
LPC-based scheme.

Then we experimented with the three aspects of modifica-
tions used in the proposed childrenization method on denoised
adult data. Performing only spectral warping (RA+RADS) en-
abled ASR improvement in both children and adults. Including
pitch shift (RA+RADN) further improved children ASR to a
large extent, meanwhile resulting in a slight performance drop
in adult ASR. Full childrenization, including also vowel stretch-
ing (RA+RADC), further improved children ASR but slightly
harmed adult ASR.

In terms of adult ASR performance, the above models per-

form similar to or better than the naı̈ve baseline. LPC-based
spectral warping with denoising (RA+RADL) is the most effec-
tive data augmentation method on adults (approximately 12 %
relative improvement). This suggests that LPC-based spectral
warping with denoising can be used as a generic data augmen-
tation method to improve the training data variability.

In CASC experiments, using the proposed method (RADC)
to produce children instances resulted in an Unweighted Ac-
curacy (UA) of 68.8%. The detailed confusion matrix in Ta-
ble 2 shows 45.1% children utterances being correctly recog-
nized meanwhile confusing only 7.3% of adult utterances. This
suggests that the proposed childrenization method can mimic
real children to some extent. In comparison, using the LPC-
based method (RADL) to produce children instances resulted
in a UA of 33.6%, with only 8% children utterances being cor-
rectly recognized meanwhile confusing 41.2% of adult utter-
ances. We made an observation on a few samples, a more ag-
gressive warping factor made LPC-warped utterances perceptu-
ally much more childlike. However, a more aggressive warping
factor led to less gain in children ASR performance in [4, Ta-
ble 3].

On both ASR and CASC, we see that the performance
gap to best-achievable numbers can be further reduced just by
adding a small amount of real children data (RA+RC5+RADC
vs RA+RC5). This suggests that a little real data with synthetic
data can be complementary to reduce the gap to the matched-
data-trained models. Notably, both RC5 and the test real chil-
dren data are from the Samrómur. A small amount of out-of-
domain children data might be less effective.

4. Conclusions
We proposed a data augmentation scheme for children ASR,
where we aimed at converting adult speech to childlike speech
by leveraging speech enhancement and voice conversion tech-
niques. Using our proposed method, we converted labelled
adult speech to be childlike and augmented ASR training data
for scenarios where no labelled real children data or very little
labelled real children data is available.

Training on publicly-available Icelandic adult data and
evaluating on publicly-available Icelandic children speech, we
improved children WER by 29% in comparison to the adult-
only model by including synthetic child data in training. This is
close to half of the 65% improvement when including real child
data in training. In our experiments, we noted that the proposed
speech enhancement step was an essential part of the process,
improving the childrenized adult speech quality for ASR. The
proposed method also substantially outperformed the reference
LPC-based method that is aimed at improving children ASR.
In addition, we evaluated child-adult speaker classification to
see the resemblance of childrenized adult data to real children.
In absence of real children data for training, our method tak-
ing childrenized adult speech as instances of the children class
outperformed different baselines including our reference model
based on the LPC-based adult speech. Overall, our proposed
method best reduces the gap to the oracle models in comparison
to other data augmentation methods exemplifying the quality of
the generated childlike speech for children speech tasks.

In this paper, we investigated a voice conversion method
that required no in-domain training data. The resulting speech
was sometimes not as clean as with deep-learning-based voice
conversion methods. In future, we will investigate parameter-
rich methods to produce childlike speech in out-of-domain
tasks.

4596



5. References
[1] S. B. Lovato and A. M. Piper, “Young children and voice search:

What we know from human-computer interaction research,”
Frontiers in Psychology, vol. 10, 2019. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00008

[2] A. Potamianos and S. S. Narayanan, “Robust recognition of
children’s speech,” IEEE Transaction on Audio Speech and
Language Processing, vol. 11, no. 6, pp. 603–616, 2003.
[Online]. Available: https://doi.org/10.1109/TSA.2003.818026

[3] G. Sivaraman, V. Mitra, H. Nam, M. K. Tiede, and
C. Y. Espy-Wilson, “Vocal tract length normalization for
speaker independent acoustic-to-articulatory speech inversion,”
in Interspeech 2016, 17th Annual Conference of the International
Speech Communication Association, San Francisco, CA, USA,
September 8-12, 2016, N. Morgan, Ed. ISCA, 2016, pp. 455–
459. [Online]. Available: https://doi.org/10.21437/Interspeech.
2016-1399

[4] H. K. Kathania, V. Kadyan, S. R. Kadiri, and M. Kurimo, “Data
augmentation using spectral warping for low resource children
asr,” Journal of Signal Processing Systems, p. 7, 2022. [Online].
Available: http://urn.fi/URN:NBN:fi:aalto-202211236653

[5] H. K. Kathania, A. Kumar, and M. Kurimo, “Vowel non-
vowel based spectral warping and time scale modification
for improvement in children’s ASR,” in IEEE International
Conference on Acoustics, Speech and Signal Processing,
ICASSP 2021, Toronto, ON, Canada, June 6-11, 2021.
IEEE, 2021, pp. 6983–6987. [Online]. Available: https:
//doi.org/10.1109/ICASSP39728.2021.9414116

[6] V. P. Singh, H. B. Sailor, S. Bhattacharya, and A. Pandey,
“Spectral modification based data augmentation for improving
end-to-end ASR for children’s speech,” in Interspeech 2022, 23rd
Annual Conference of the International Speech Communication
Association, Incheon, Korea, 18-22 September 2022, H. Ko and
J. H. L. Hansen, Eds. ISCA, 2022, pp. 3213–3217. [Online].
Available: https://doi.org/10.21437/Interspeech.2022-11343

[7] S. Shahnawazuddin, N. Adiga, K. Kumar, A. Poddar, and
W. Ahmad, “Voice conversion based data augmentation to
improve children’s speech recognition in limited data scenario,”
in Interspeech 2020, 21st Annual Conference of the International
Speech Communication Association, Virtual Event, Shanghai,
China, 25-29 October 2020, H. Meng, B. Xu, and T. F.
Zheng, Eds. ISCA, 2020, pp. 4382–4386. [Online]. Available:
https://doi.org/10.21437/Interspeech.2020-1112

[8] D. K. Singh, P. P. Amin, H. B. Sailor, and H. A. Patil, “Data
augmentation using CycleGAN for end-to-end children ASR,” in
29th European Signal Processing Conference, EUSIPCO 2021,
Dublin, Ireland, August 23-27, 2021. IEEE, 2021, pp. 511–515.
[Online]. Available: https://doi.org/10.23919/EUSIPCO54536.
2021.9616228

[9] H. Kawahara, I. Masuda-Katsuse, and A. De Cheveigne, “Re-
structuring speech representations using a pitch-adaptive time–
frequency smoothing and an instantaneous-frequency-based f0
extraction: Possible role of a repetitive structure in sounds,”
Speech communication, vol. 27, no. 3-4, pp. 187–207, 1999.

[10] M. MORISE, F. YOKOMORI, and K. OZAWA, “World: A
vocoder-based high-quality speech synthesis system for real-time
applications,” IEICE Transactions on Information and Systems,
vol. E99.D, no. 7, pp. 1877–1884, 2016.

[11] M. Morise, “Cheaptrick, a spectral envelope estimator for
high-quality speech synthesis,” Speech Communication, vol. 67,
pp. 1–7, 2015. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0167639314000697

[12] ——, “D4c, a band-aperiodicity estimator for high-quality
speech synthesis,” Speech Communication, vol. 84, pp. 57–
65, 2016. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167639316300413

[13] ——, “Harvest: A high-performance fundamental frequency
estimator from speech signals,” in Interspeech 2017, 18th Annual

Conference of the International Speech Communication Associ-
ation, Stockholm, Sweden, August 20-24, 2017, F. Lacerda, Ed.
ISCA, 2017, pp. 2321–2325. [Online]. Available: http://www.
isca-speech.org/archive/Interspeech 2017/abstracts/0068.html

[14] S. Lee, A. Potamianos, and S. Narayanan, “Acoustics of children’s
speech: Developmental changes of temporal and spectral param-
eters,” The Journal of Acoustical Society of America, vol. 105(3),
pp. 1455–1468, 1999.

[15] A. Nicolson and K. Paliwal, “On training targets for deep learning
approaches to clean speech magnitude spectrum estimation.” The
Journal of the Acoustical Society of America, vol. 149(5).

[16] Q. Zhang, A. Nicolson, M. Wang, K. K. Paliwal, and C. Wang,
“Deepmmse: A deep learning approach to mmse-based noise
power spectral density estimation,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 28, pp. 1404–1415,
2020.

[17] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of
generic convolutional and recurrent networks for sequence mod-
eling,” arXiv:1803.01271, 2018.

[18] C. D. Hernandez Mena, D. E. Mollberg, M. Borský, and
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