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Abstract
To achieve efficient feature fusion, existing research tends to
employ cross-attention to control the contributions of different
modalities in fusion. However, this inevitably causes high com-
putational effort and introduces noise weights due to redundant
computations. Therefore, this paper proposes sliding window
attention (SliWa) to control the feature perception range and dy-
namically model the modality fusion at different granularities.
In addition, we present a novel feature map classifier (FMC)
based on high-response feature reuse (HRFR), which explicitly
preserves the deep emotional feature structure, thus preventing
the submersion of the crucial classification information after av-
erage flattening and the negative impacts of parameter flooding.
We unify the mentioned modules in the SWRR framework, and
the experimental results on the commonly used datasets IEMO-
CAP and CMU-MOSEI reveal the effectiveness of SWRR in
improving the performance of emotion recognition.
Index Terms: multimodal emotion recognition, feature fusion,
feature reuse, classifier

1. Introduction
As intelligent devices continue to advance, emotional intelli-
gence technology is being integrated into applications such as
escort robots and assisted driving [1]. Accurately identifying
the user’s emotional state is crucial to effectively meet user re-
quirements. Human emotion expression often involves mul-
timodality, making a multimodal emotion recognition (MER)
system valuable in leveraging the complementarity of multi-
modal features to enhance robustness and performance [2].

Feature fusion is one of the important techniques in MER,
different from previous studies that modeled each modality in-
dependently and then combined them at the classification level
[3, 4], researchers are currently focusing on the interaction be-
havior between modalities and working on decoupling the com-
plexity to design efficient fusion mechanisms. Cimtay et al.
[5] propose a mixed feature-decision level fusion approach to
jointly process physiologic modalities at varying time instances.
Chen et al. [6] proposed a multi-stage multimodal dynamic fu-
sion network with a unique design for unimodal, bimodal, and
trimodal interactions, respectively. As more MER models are
proposed, the self-attention-based [7] cross version further en-
hances the modalities interaction [8, 9, 10], Query, Key, and
Value are assigned to different modal separately to obtain cross-
correlation guiding weighted aggregations under fine granular-
ity, in which, Peng et al. [8] proposed to use attention units
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to combine the outputs of different pooling methods; Sun et al.
[10] utilize cross- and self-attention to accomplish inter- and
intra-modal information propagation. However, obtaining the
correlation matrix entails significant computational effort. Con-
sequently, several labor-saving methods have been proposed,
such as random, global [11], etc., but few studies have been
conducted under multimodal cross-attention. And we also note
that the cross-correlation matrix generates a large number of
noise weights in the order of [e−10, e−20] after softmax.

The classification algorithm will influence recognition per-
formance to a great extent as well. Some traditional methods
based on machine learning [12, 13] provide solutions for emo-
tion recognition techniques. Due to the end-to-end processing
in deep learning, it can be better adapted to unstructured data.
Many deep learning-based classifiers have been developed to
enhance the efficiency of emotion recognition [14]. Most stud-
ies [10, 15, 16] typically flatten the extracted deep features and
employ fully-connected layers (FC) for classification, the struc-
tural features containing emotional-semantic information are
often corrupted when the deep features are flattened to a one-
dimensional sequence; additionally, the massive to-be-learned
parameters introduced by FC make it difficult to effectively de-
tect emotional features with category-critical information, and
pose the risk of overfitting. To mitigate that, Huang et al. [17]
suppress overfitting by adding label-smoothing regularization;
Liu et al. [18] improve the distinguishability of emotion embed-
dings by jointly triplet loss and cross-entropy loss. However, in
the MER tasks, there is less research on preventing structural
feature collapse that impacts emotional-semantic features.

To solve the above issues, we propose a feature map clas-
sifier based on sliding window attention and high-response fea-
ture reuse (SWRR) for MER. Specifically, we summarize the
contributions of this paper as follows:

1. In sliding window attention (SliWa) mechanism, the sliding
window truncates redundant computation and weight noise
so that the text and audio modalities are dynamically fused
within the maximum-effective feature perception range.

2. We replace FC with the feature map classifier (FMC) to
address the issue of submerging the emotion-critical infor-
mation in feature maps due to the structure semantic cor-
ruption and propose high-response feature reuse (HRFR) to
help the kernel obtain additional emotion-categories high-
response information to enhance the category sensitivity and
make the correct confidence mapping.

3. The experimental results indicate that SWRR achieves 77.4%
WA and 78.5% UA on IEMOCAP; we further verify the gen-
eralization ability of SWRR on CMU-MOSEI and reach a su-
perior performance of 52.4%, 84.8%, and 83.8% on 7-class
accuracy, binary accuracy, and F1-score, respectively.
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Figure 1: Illustration of SWRR framework. WavLM [19] & BERT [20]: pre-trained audio & text models as feature extractors, K(h,w):
the convolution kernel size (h, w), Cn: the number of feature maps, ⊕: element-wise addition.

2. Methodology
The working mechanism of SWRR is illustrated in Fig.1. The
pre-trained model extracts the embedding features from input
modalities, sliding window attention (SliWa) is employed to
model inter-modal interactions, and multi-level high-response
feature reuse (HRFR) is utilized to continuously reinforce the
emotion-categories high-response information in the feature
map, finally, the feature map classifier (FMC) completes the
sample label space mapping.

2.1. Redundant Filtering

Different modalities have intersectionality in representation,
therefore we have to notice the issue of inter-modal feature re-
dundancy [21]. To solve the issue, we consider that emotions
are time-varying behaviors and there is a natural correlation be-
tween audio and text, so we design shared LSTM blocks to
allow cross-modal weight sharing at the time step, and obtain
audio and text filtering features X ∈ RN×D and Y ∈ RT×D

under the joint influence of these two modalities.

2.2. Sliding Window Attention

To solve the problem of redundant computation and noise
weight caused by the full-size cross-dot product, we propose the
sliding window attention (SliWa) fusion technique, as shown in
Fig.2, which aims to control the feature perception range at fine
granularity by the sliding window mechanism, derive the corre-
lation coefficients between modalities within the window, and
dynamically model inter-modal information propagation.

Slide

Window

Product

Aggs.

SoftMax（               )     

Figure 2: SliWa block architecture, Slide is the sliding direc-
tion, Window is the window mapping.

Specifically, the filtering features are first windowed in the
sequence dimension:

mi = {m(i−1)hM+1, · · · ,m(i−1)hM+ωM
} (1)

NM =

⌊
N − ωM

hM

⌋
+ 1,

(
NX = NY

)
(2)

where M ∈ {X,Y},m ∈ {x, y}, i ∈ {1, 2, ..., NM}, mi ∈
RωM×D , ωM is the window width, hM is the window hop-
length, ⌊·⌋ denotes rounding down, and NM is the number of
windows under ωM and hM divisions.

Since the sequence length of Y is much shorter compared
to X, to adequately and efficiently model feature fusion, we set
ωY = 1 and hY = 1 when performing window attention cal-
culations, and employ vector projections to obtain the query for
text, as well as the key and value [7] for audio:

qyi = wqyi (3)
kx
i , v

x
i = wk,vxi (4)

where wq,k,v is the learnable parameter, qyi ∈ R1×d, kx
i , v

x
i ∈

RωX×d

Following, the cross-dot product is performed at differ-
ent granularities within the window and normalized to [0, 1]
with Softmax as the correlation coefficient, which guides the
weighted aggregations (Aggs.) of the value representations vxi
within the current window ωX , and the inter-modal information
propagation through residual connections to obtain the comple-
mentary fusion feature zi:

zi = Softmax

(
qyi (kx

i )
T

√
d

)
vxi (5)

zi = LayerNorm (yi + wzzi) (6)

Notably, since SliWa is an algorithm based on matrix oper-
ations, we concatenate the divided windows mi at the first di-
mension according to (7), which means that the operations (3)
to (6) on M can be performed in parallel between the windows:

M =
{
m1,m2, . . . ,mNM

}
∈ RNM×ωM×D (7)

2.3. Feature Map Classifier

In the SWRR, convolutional neural networks (CNNs) act as
the backbone network to further process the fusion features,
which learn the emotional features from different perspectives
and characterize them within the feature maps. However, using
FC leads to the collapse of temporal- and structural-semantic in-
formation in feature maps, and crucial features with emotional
discrimination are submerged in one-dimensional sequences af-
ter average flattening, making it difficult to be effectively ex-
plored by the numerous to-be-learned parameters.

To address these challenges, we utilize the feature map clas-
sifier (FMC) as the emotion discriminator, we define n ker-
nel functions as filters for n-category emotions, where the k-
category is mapped to the corresponding feature map P k. Due
to the continuous accumulation and overlap of the receptive
field, the resolution of P k is lower but semantic information
is richer now, so the structural information can be globally ag-
gregated and normalized as category confidence pk to complete
the emotion classification and optimized by cross-entropy loss.
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2.4. High-Response Feature Reuse

The core requirement to improve the performance of FMC is
that the confidence response of P k should be higher than the
non-k category. Therefore, how the emotion filter Φk makes
P k become a feature map with discriminative high-response is
the bottleneck that limits the recognition efficiency of FMC.

We plan the mentioned issues uniformly and propose high-
response feature reuse (HRFR). Since the FMC allows the
model to optimize the emotion representation of the correct cat-
egory toward high response, we design HRFR to consist of two
parts: high-response feature map screening (HRS) and feature
reuse. HRS is applied to capture the most effective category dis-
criminative feature maps and subsequently reinforce the multi-
level output’s represent capability to emotional-critical informa-
tion through feature reuse, thus facilitating Φ to produce high-
response mappings for the correct categories.

Emotion expression is time-varying, so we believe that the
content of category discriminative information should not be
determined only by the global response of the feature map but
also consider the number of frame features that are discrimina-
tive within it, which we name as emotional keyframes. There-
fore, HRS is designed as a dual-branch structure integrating the
global responses as well as local keyframes.

Avoid taking the value of the global average response di-
rectly, but employ (8) to (9) [22] to obtain the importance α as
the global response branch score, which can prevent the misde-
cision due to the over-low response of certain local frame fea-
tures:

z =

∑
(i,j)∈Fm

Z(i,j)∏
Fm

(8)

α = F (z,W1,2) = σ (W2δ (W1(z))) (9)

where z, α ∈ RC , Fmis the pixel point range of the feature
map, σ and δ are the Sigmoid and LeakyRelu activation func-
tions. W1,2 ∈ RC×C

2
,C
2
×C is the learnable parameter.

Same reasons as above, the number of keyframe blink
points owned within a single frame is the criteria for judg-
ing emotional keyframes. First, we utilize the 1D-convolution
shared among feature maps to conduct response filtering under
the unified standard for all frame features within each feature
map in Z to find Z̃ (Z̃c,i,j denotes the j-th response point in the
i-th frame of the c-th feature map). Second, obtaining the mean
value of the filtered response points, and we denote the points
beyond that as keyframe blink points and their count as the im-
portance score of a single frame. Finally, finding the mean of
the importance scores of all frames as the keyframe threshold,
attaining the total number of emotional keyframes within every
feature map as the local branch score. We define the process as:

β =
H′∑

i

ε


Z̃i −

∑H′
i

∑W ′
j ε

(
Z̃i,j − ΣW ′

j Z̃i,j

W ′

)

H ′


 (10)

where ε denotes the Heaviside function, and β ∈ RC .
Lastly, screening the score-weighted key feature map

Zγmax determined jointly by the global response and local
keyframes, and feature reuse is achieved at the next-level output
through residual connections:

γ = H ′ · α+ β (11)

γmax = argmax(
exp

(
γi
)

∑c
j=1 exp (γ

j)
), i ∈ {1, c} (12)

3. Experiment
3.1. Dataset

IEMOCAP [23] is a commonly used emotional dataset that
contains approximately 12 hours of audio, video, transcription,
and motion capture data, recorded by five male and five female
actors. For this dataset, audio and transcription were selected
as the input modalities, and a total of 5,531 utterances were
evaluated using leave-one-speaker-out cross validation for four-
category emotions: happy (merged with excited), angry, sad,
and neutral. WA (weighted accuracy) and UA (unweighted ac-
curacy) are used as evaluation metrics.
CMU-MOSEI [24] contains 3,228 videos of monologues per-
formed by 1,000 people collected from YouTube for a total of 65
hours, which are further sliced into 23,453 sentences and tran-
scriptions and labeled with sentiment scores of [-3,+3]. Sim-
ilar to previous works, 16,326, 1,871, and 4,659 of these are
used for training, validation, and testing. For the seven-category
evaluation (ACC7), we rounded the sentiment scores to seven
discrete points, the binary accuracy (negative (<0), positive
(>0); ACC2) and the F1-score are also used as metrics.

3.2. Experiment settings

We employ pre-trained models WavLM [19] and BERT [20] to
extract 768-dimensional embedding features for audio and text,
respectively, with maximum sequence lengths of 255 and 50;
the number of hidden units in the shared LSTM block is 384,
hX set to 5. HRS’s response point and keyframe screening ra-
tios are both 50% (H’= 0.5H, W’= 0.5W). SWRR is trained by
PyTorch on 1 RTX 2080 Ti, using the Adam optimizer with
betas set to 0.9 and 0.99, the learning rate is 5e−4 on IEMO-
CAP and 1e−3 on CMU-MOSEI, and training 50 and 20 epochs
respectively, every 50% past which the learning rate decays by
a factor of 10.

3.3. Comparison

We conduct comparison experiments with other advanced meth-
ods on IEMOCAP. FSER [25]: utilizes dual spectrograms with
custom spectrograms to solve the issue of disorder and pro-
poses dynamic confidence to fuse each modal in the decision
layer; MPFU [26]: proposes a data-driven multiplicative fu-
sion method to combine the multi-modality for efficient predic-
tions; SWT [27]: proposes a multimodal transformer with shar-
ing weights in each layer to learn the mutual correlation; TSIN
[28]: presents a Temporal and Semantic Interaction Network
(TSIN) for keeping temporal and semantic consistency between
audio and text; MHA [29]: proposal to fuse audio, text, and
motion capture (MoCap) data via multi-head attention.

Table 1: Evaluation results of IEMOCAP. (A: Audio; T: Text; F:
Facial; M: MoCap; 3 is the trimodal version)

Methods Features WA% UA%

FSER [25] A + F 75.4 76.4
MPFU [26] A + F – 75.4
SWT [27] A + T 76.8 77.1
TSIN [28] A + T 76.2 78.1

MHA [29] A + M + T 75.6 –
MPFU3 [26] A + F + T – 78.2

SWRR A + T 77.4 78.5
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We also perform generalizability tests on CMU-MOSEI
and compare with other methods in the literature. MFRM
[30]: proposes a multi-fusion network with residual memory
units for the long fusion sequence forgetting problem; MISA
[31]: learning modality-invariant and -specific representations
as a comprehensive and disentangled view to aid fusion; self-
MM [32]: proposes modeling consistency and difference by
unimodal supervision with multimodal joint training; TETFN
[33]: proposes a text-enhanced transformer fusion network and
retains the distinction by unimodal prediction; LGCCT [34]:
presents an improved gating mechanism and transformer for
cross-complementation of modalities.

Table 2: Evaluation results of CMU-MOSEI

Methods Features ACC7% ACC2% F1%

MFRM [30] A + F + T 50.9 82.4 82.6
MISA [31] A + F + T 52.2 83.6 83.8

self-MM [32] A + F + T - - 82.8 82.5
TETFN [33] A + F + T - - 84.3 84.2

LGCCT [34] A + T 47.5 81.1 81.0

SWRR A + T 52.4 84.8 83.8

We compare with advanced methods based on different
models on both datasets and display them in Tables 1 and 2.
Specifically, FSER [25] adopts decision-layer fusion and aban-
dons explicit modeling of inter-modal interactions; SWRR im-
proves by 1.8% compared to a tri-modal MHA [29] utilizing
global attentional fusion and 3.1% compared to MPFU [26]
employing multiplicative fusion. In addition, we further vali-
date the effectiveness of SWRR on CMU-MOSEI, which also
reaches a promising performance compared with the FC-based
classifier [27, 28, 34] mentioned above, indicating that FMC
can also perform MER tasks very well with the facilitation of
HRFR. We should also consider that SWRR is a bimodal sys-
tem employing audio and text, but still exhibits comparable or
even better performance than the trimodal systems with the ad-
dition of MoCap [29] or Facial [30, 31, 32] features, and al-
though it is lower than TETFN [33] in terms of F1-score, SWRR
achieves optimal performance on the remaining evaluation met-
rics, demonstrating the superiority of our proposed model.

(a) ωX = 10 (b) ωX = 50

(c) ωX set to full-size

Figure 3: the thermogram of the mean correlation coefficient of
ωX at different widths

3.4. Ablation and Variation Studies

We conduct the ablation study on IEMOCAP to validate sev-
eral key components of SWRR and present the results in Table
3. First, we explore the performance of the unimodal version,
which shows a significant decrease in both WA and UA, there-
fore, reasonably modeling multimodal information is one of the
effective ways to improve recognition performance. To explore
the effect of SliWa on the system performance, a full-size cross-
dot product is used instead of the sliding window mechanism
during the fusion phase, which leads to a 2.1% and 1.8% de-
creases in WA and UA, the thermogram of the mean correlation
coefficient at ωX of 10, 50, and full-size is shown in Fig.3, the
introduced noise coefficient increases with the window width,
which indicates that the sliding window can effectively pre-
vent the inflowing truncated noise giving weak correlation co-
efficients to the audio single-frame features and participating
in the aggregation, thus blurring the fusion representation. We
also explore the role of HRFR and the advantages of its dual-
branch structure design, the UA decreases by 2.3% when re-
moving HRFR, revealing that the additional emotion-categories
high-response information can effectively promote the kernel to
make the correct category mapping and improve the system per-
formance. The single-branch structure also causes varying de-
grees of performance degradation, thus considering both global
response and local keyframes is a vital design to drive the suc-
cess of HRS. Moreover, HRFR-based FMC can perform better
with fewer parameters than linear classifiers, explicitly retaining
temporal- and structural-semantic information, therefore, which
can be applied as a new paradigm of classifiers for MER.

Table 3: Module ablation studies on the IEMOCAP

Models WA% UA%

w/o audio 71.7 72.3
w/o text 70.9 71.6

SliWa (full-size) 75.3 76.7
SliWa (ωX = 50) 76.2 76.9

w/o HRFR 75.6 76.2
HRFR (uni-global) 76.4 77.0
HRFR (uni-local) 75.9 76.8

Linear 76.5 77.4

SWRR 77.4 78.5

4. Conclusions
In this paper, we propose employing FMC to address the issue
of one-dimensional average flattening causing the collapse of
the feature structure. For further improving the performance of
FMC, we present the SliWa fusion technique to reduce the re-
dundant computation while truncating the noise coefficient and
thus improving the fusion efficiency; the HRFR can strengthen
the represent capability of feature maps to emotion-categories
high-response information, thus facilitating the emotion filters
to make correct confidence mapping ultimately. These propos-
als are integrated into SWRR and achieve superior performance
on IEMOCAP and CMU-MOSEI, demonstrating the effective-
ness of SWRR in MER tasks.

In future work, we will explore novel fusion mechanisms
to incorporate facial modality and test the incentive effect of
HRFR under the trimodal version.

2436



5. References
[1] S. Zhao, G. Jia, J. Yang, G. Ding, and K. Keutzer, “Emotion

recognition from multiple modalities: Fundamentals and method-
ologies,” IEEE Signal Processing Magazine, vol. 38, no. 6, pp.
59–73, 2021.

[2] S. K. D’mello and J. Kory, “A review and meta-analysis of
multimodal affect detection systems,” ACM computing surveys
(CSUR), vol. 47, no. 3, pp. 1–36, 2015.

[3] T. Mittal, A. Bera, and D. Manocha, “Multimodal and context-
aware emotion perception model with multiplicative fusion,”
IEEE MultiMedia, vol. 28, no. 2, pp. 67–75, 2021.

[4] Y. Lee, S. Yoon, and K. Jung, “Multimodal Speech Emotion
Recognition Using Cross Attention with Aligned Audio and
Text,” in Proc. 2020 Annual Conf. of the International Speech
Communication Association (INTERSPEECH), Virtual Event /
Shanghai, China, October 2020, pp. 2717–2721.

[5] Y. Cimtay, E. Ekmekcioglu, and S. Caglar-Ozhan, “Cross-subject
multimodal emotion recognition based on hybrid fusion,” IEEE
Access, vol. 8, pp. 168 865–168 878, 2020.

[6] S. Chen, J. Tang, L. Zhu, and W. Kong, “A multi-stage dynamical
fusion network for multimodal emotion recognition,” Cognitive
Neurodynamics, pp. 1–10, 2022.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[8] Z. Peng, Y. Lu, S. Pan, and Y. Liu, “Efficient speech emotion
recognition using multi-scale cnn and attention,” in Proc. 2021
IEEE Int. Conf. Acoustics, Speech and Signal Process. (ICASSP),
Toronto, ON, Canada, June 2021, pp. 3020–3024.

[9] Z. Zhao, Y. Wang, and Y. Wang, “Multi-level fusion of wav2vec
2.0 and bert for multimodal emotion recognition,” arXiv preprint
arXiv:2207.04697, 2022.

[10] L. Sun, B. Liu, J. Tao, and Z. Lian, “Multimodal cross-and self-
attention network for speech emotion recognition,” in Proc. 2021
IEEE Int. Conf. Acoustics, Speech and Signal Process. (ICASSP).
Toronto, ON, Canada: IEEE, June 2021, pp. 4275–4279.

[11] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti,
S. Ontanon, P. Pham, A. Ravula, Q. Wang, L. Yang et al., “Big
bird: Transformers for longer sequences,” Advances in neural in-
formation processing systems, vol. 33, pp. 17 283–17 297, 2020.

[12] N. Cummins, S. Amiriparian, G. Hagerer, A. Batliner, S. Steidl,
and B. W. Schuller, “An image-based deep spectrum feature repre-
sentation for the recognition of emotional speech,” in Proc. of the
25th ACM international conference on Multimedia (ACM MM),
Mountain View, CA, USA, October 2017, pp. 478–484.

[13] P. Vasuki, “Design of hierarchical classifier to improve speech
emotion recognition,” Computer Systems Science and Engineer-
ing, vol. 44, no. 1, pp. 19–33, 2023.
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