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Abstract

Speech emotion recognition is a popular research branch of
speech signal processing. Many previous studies have proven
that the generalization ability of the emotion recognition model
across domains can be improved by using transfer learning
methods. To solve the cross-domain speech emotion recog-
nition problem, this paper proposes a novel transfer learning
method, which simultaneously performs the instance recon-
struction and subspace alignment. Firstly, we conduct the in-
stance transferring based on coupled projection, which utilizes
a weighting reconstruction strategy to exploit the intrinsic in-
formation of cross-domain samples and improve the contribu-
tion of essential features through an adaptive weighting matrix.
Then, we conduct the feature transferring through a novel co-
regularized term, which can make the source and target sub-
space be well aligned. Finally, extensive experiments indicate
that our method is superior to several state-of-the-art methods.
Index Terms: cross-domain, speech emotion recognition, in-
stance reconstruction, subspace alignment

1. Introduction
Speech emotion recognition (SER) has gained much attention
in recent years. Many machine learning methods have been in-
troduced for SER [1], which aim to recognize the emotional
states from speech signals, e.g., happiness, anger, sadness, and
fear. However, these traditional SER methods always assume
that the training and test samples follow the same distribution,
which is not applicable in real-world scenarios. Due to several
factors, including tagging schemes, linguistic environments, the
type of domains (e.g., evoked, performed, and natural), the de-
gree of spontaneity, and even the recording devices, the train-
ing and test samples often follow different distributions, which
would lead to the degradation of the emotion recognition per-
formance [2]. To address the above problem, the transfer learn-
ing technique has been introduced, which can transfer useful
information from one or multi-source domains to a related tar-
get domain [3]. Many previous works have shown that transfer
learning can significantly improve the generalization ability of
the classification model, especially when only a small amount
of data is available in the target domain [4]. Therefore, in this
paper, we focus on designing a transfer learning algorithm to
solve the cross-domain SER problem.
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In recent years, many transfer learning works have been
presented to deal with the cross-domain SER problem. For
instance, different normalization strategies on six standard do-
mains are used to reduce the variation between domains. In [5],
three types of transfer learning algorithms are introduced for
the cross-domain SER tasks. In [6], the feature selection strat-
egy is integrated into a general transfer learning framework to
deal with the challenging cross-domain SER problem. In [7],
Zhang et al. design a cross-domain graph as the transfer metric
to reduce the discrepancy between domains. In [8], Liu et al.
propose an unsupervised transfer subspace learning (TRaSL)
model for cross-database SER. In [9], Padi et al. utilize the
transfer learning and spectrogram augmentation strategy to im-
prove the SER performance. In [10], Li et al. present a novel
coupled discriminant subspace alignment (CDSA) method for
cross-database SER. In [11], Ghriss et al. propose a multi-task
pre-training method for SER, which pre-trains the SER model
simultaneously on the automatic speech recognition (ASR) and
sentiment classification tasks to make the acoustic ASR model
more “emotion aware”. The above algorithms have achieved
satisfactory results, but they ignore the contribution of different
features in the process of knowledge transfer, which would di-
rectly affect the performance of emotion recognition. Moreover,
they do not fully consider the relationship between the source
and target features.

Based on the above analysis, in this article, we propose a
novel transfer learning algorithm for cross-domain SER, named
joint instance reconstruction and feature subspace alignment
(JIFA). Our method takes into account the contribution of es-
sential features by using a new instance reconstruction strategy,
which introduces an adaptive weighting matrix on the recon-
struction term to narrow the divergence gap across domains.
Moreover, the feature subspace is aligned by minimizing the
two projection matrices, which can make the source and target
domains closer. Comprehensive experimental results demon-
strate that our method can learn better feature representations
than other transfer subspace learning algorithms. For better il-
lustration, the schematic of our method is given in Fig. 1.

2. Methodology
2.1. Adaptive weighting instance reconstruction

Let Xs ∈ Rm×ns and Xt ∈ Rm×nt be the labeled source
and unlabeled target feature matrices, respectively, where m
denotes the dimension of features, where ns and nt are the
corresponding numbers of samples. We first conduct a linear
reconstruction on coupled subspace, in which each target sam-
ple can be linearly reconstructed by the source samples in their
subspace. The data reconstruction between different domains
can effectively reflect the intrinsic information of the data by a
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reconstruction matrix. Also, to eliminate the redundant features
and noise in the data, we impose an ℓ2,1−norm on the data re-
construction matrix to control its row sparsity. The problem can
be formulated as

min
Ps,Pt,Z

∥PT
t Xt − PT

s XsZ∥2F + γ∥Z∥2,1 (1)

Figure 1: The schematic of JIFA.

where Ps ∈ Rm×d and Pt ∈ Rm×d are the source and
target projection matrices, Z ∈ Rns×nt is the reconstruction
matrix, || · ||F is the Frobenius norm, || · ||2,1 is the ℓ2,1−norm,
and γ ≥ 0 is used as a regularization parameter to control the
sparsity of matrix Z.

The discrepancy between the source and target domains can
be reduced by minimizing Eq. (1), but the discriminant infor-
mation between cross-domain samples is not well discovered.
In other words, the important features and redundant features
are considered equally important. To overcome this problem,
we use an adaptive weighting strategy to penalize the recon-
struction error, which can adaptively assign larger weights to
the essential features and assign lower weights to the unimpor-
tant features. Thus, Eq. (1) can be further written as

min
Ps,Pt,Z,W

∥W 1
2 ⊙ (PT

t Xt − PT
s XsZ)∥2F + β∥W∥2F + γ∥Z∥2,1

(2)
where β ≥ 0 is a regularization parameter, W ∈ Rd×nt is
the adaptive weighting matrix, and the operator W

1
2 represents

its square root. We impose a constraint WT 1 = 1 to limit the
range of the element values of W , where 1 ∈ Rd×1 is a vector
whose elements are 1. Hence, Eq. (2) can be reformulated as

min
Ps,Pt,Z,W

∥W 1
2 ⊙ (PT

t Xt − PT
s XsZ)∥2F + β∥W∥2F + γ∥Z∥2,1

s.t. Z ≥ 0, WT 1 = 1, W ≥ 0
(3)

where Z ≥ 0 and W ≥ 0 are the non-negative constraints to
ensure good interpretability of the samples, in which the sim-
ilar relationships between these cross-domain samples can be
directly reflected.

2.2. Feature subspace alignment

Transfer learning aims to enable two domains to learn from each
other to improve overall performance. Hence, we need to inte-
grate the compatible and complementary information from the
two domains. To this end, we might align the feature subspace
through various standard normalization terms to reduce the di-
vergence between the low-dimensional representations, which

would facilitate the knowledge transfer of information across
domains.

As shown in Eq. (3), two projection matrices are used to
reconstruct the low-dimensional representations. Each column
of the projection matrices can be regarded as the coding of the
original features. Therefore, JIFA attempts to minimize the di-
vergence between each pair feature from source and target pro-
jection matrices as follows:

D (Ps, Pt) = ∥ LPs

∥LPs∥2F
− LPt

∥LPt∥2F
∥2F (4)

where LPs = PsP
T
s , LPt = PtP

T
t , and LPs and LPt repre-

sent the graphs that contain the relationships between all fea-
tures in the source and target domains, respectively. In other
words, LPs and LPt are the adjacency matrices that is typi-
cally the linear kernel matrices. For LPs and LPt , the simi-
larity weight of the features of each pair of nodes is calculated
by using the inner product of every two features. Minimizing
Eq. (4) encourages the feature subspace to learn from each other
and bridge the gap between them. Furthermore, D (Ps, Pt)
can be replaced with a trace form through mathematical deduc-
tions [12] as follows:

D (Ps, Pt) = −Tr(PsP
T
s PtP

T
t ) (5)

Combining Eqs. (3) and (5), we can get the objective func-
tion of the proposed method as follows:

min
Ps,Pt,Z,W

∥W 1
2 ⊙ (PT

t Xt − PT
s XsZ)∥2F

− αTr(PsP
T
s PtP

T
t ) + β∥W∥2F + γ∥Z∥2,1

s.t. Z ≥ 0, WT 1 = 1, W ≥ 0

(6)

where α ≥ 0 is a regularization parameter.

3. Optimization
In this section, we use the alternating direction method of mul-
tipliers (ADMM) [13] strategy to facilitate the optimization of
Eq. (6). Let M = PT

t Xt − PT
s XsZ, we get the following

Lagrangian function:

L = ∥W 1
2 ⊙M∥2F − αTr(PsP

T
s PtP

T
t ) + β∥W∥2F

+
µ

2
∥PT

t Xt − PT
s XsZ −M +

C

µ
∥2F + γ∥Z∥2,1

(7)

where µ ≥ 0 is a penalty regularization parameter, and C is
a Lagrange multiplier. We update one variable by fixing other
variables. The procedures are given as follows.

(1) Update W : Denote wj as the j−th column of the ma-
trix W , V = M ⊙M , and vj is the j−th column of V , we can
obtain

min

nt∑

j=1

∥wj +
1

β
vj∥22 s.t. wj ≥ 0, wT

j 1 = 1 (8)

The above equation can be transformed into the following
Lagrangian form:

L(wj , δj , κj) =
1

2
∥wj +

1

β
vj∥22 − δj(w

T
j 1 − 1)− κT

j wj

(9)
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where δj ≥ 0 and κj ≥ 0 are the introduced Lagrangian multi-
pliers. By computing the derivative of L(wj , δj , κj) w.r.t. wj ,
we get

∂L(wj , δj , κj)

∂wj
= wj +

1

β
vj − δj1 − κj (10)

By adding a constraint, i.e., wT
j 1 = 1, and using the

Karush-Kuhn-Tucker (KKT) condition, i.e., κj ⊙ wj = 0, we
can get

wj = max

(
δj1 − 1

β
vj , 0

)
, δj =

1

d
+

1

dβ

d∑

i=1

vij (11)

where d is the number of elements of the vector vi. The
closed-form solutions of wj and δj are obtained by iteratively
optimizing Eq. (11). In this way, we can get the optimal adap-
tive weighting matrix W .

(2) Update M : Let H = PT
t Xt − PT

s XsZ − M + C
µ

,
we can obtain

d∑

i=1

nt∑

j=1

min
mij

(
mij − µhij

µ+ 2wij

)2

(12)

where hij and mij represent the elements of H and M , respec-
tively. The optimal mij can be expressed as follows:

mij =
µhij

µ+ 2wij
(13)

(3) Update Z: According to [14], we use an iterative opti-
mization algorithm to solve the ℓ2,1−norm. Define ∥Z∥2,1 =
Tr(ZTGZ), where G ∈ Rns×ns is a diagonal matrix, i.e.,
G=diag( 1

2∥z1∥2 , 1
2∥z2∥2 , . . ., 1

2∥zns∥2
), in which zi is the i−th

row of Z. Let T = PT
t Xt −E+ C

µ
. By calculating the deriva-

tive of L w.r.t. Z, we get the following equation:

∂L

∂Z
= γGZ − µXT

s PsT + µXT
s PsP

T
s XsZ (14)

By setting ∂L
∂Z

= 0, we can get

Z =
µXT

s PsT

γG+ µXT
s PsPT

s Xs

(15)

(4) Update Ps and Pt: By taking the derivative of L w.r.t.
Ps, we can obtain

∂L

∂Ps
= −αPtP

T
t Ps + µXsZZTXT

s Ps − µXsZTT (16)

By setting ∂L
∂Ps

= 0, we can get

Ps =
µXsZTT

µXsZZTXT
s − αPtPT

t

(17)

Similarly, let Q = PT
s Xs + E + C

µ
, we can obtain

Pt =
µXtQ

T

µXtXT
t − αPsPT

s

(18)

(5) Update C and µ: we can obtain

C = C + µ(PT
t Xt − PT

s XsZ − E) (19)

µ = min(µmax, ρµ) (20)

where µmax and ρ are constants.

Algorithm 1 JIFA (solving Eq. (6))
Input: Source feature matrix Xs and target feature matrix Xt; the
regularization parameters α, β, γ; and a small threshold value ε.
Output: The source projection matrix Ps, the target projection ma-
trix Pt, the reconstruction matrix Z and adaptive weighting matrix
W .
Initialize: Initialize Ps and Pt via PCA; Initialize Z and set t = 0.
repeat

1. Fix other variables and update W by using Eq. (11);
2. Fix other variables and update M by using Eq. (13);
3. Fix other variables and update Z by using Eq. (15);
4. Fix other variables and update Ps and Pt by using Eq. (17) and
Eq. (18);
5. Fix other variables and update C and µ by using Eq. (19) and
Eq. (20);
6. t = t+ 1;
7. Check the convergence condition: if t > 2 and ∆L = L(t) −
L(t−1) < ε, where L(t) is the objective value in the t-th iteration;

until Convergence condition is satisfied or the maximum number of
iterations is reached.
return Ps, Pt, Z,W .

4. Experiments
4.1. Experimental setup

In this section, we evaluate the effectiveness of the pro-
posed algorithm on four benchmark datasets: Emo-DB (Em)
[15], eNTERFACE (En) [16], RML (Rm) [17], and BAUM-
1a (Ba) [18]. Two of the above datasets are randomly used
as the source and target domains, so we can get 12 sets of
cross-domain SER (source→target), i.e., Em→En, En→Em,
Em→Rm, Rm→Em, Em→Ba, Ba→Em, En→Rm, Rm→En,
En→Ba, Ba→En, Rm→Ba, and Ba→Rm. In the experiments,
we consider five common emotion categories: anger, sadness,
disgust, happiness, and fear. For training and test data, the tar-
get dataset are split into ten parts and 8/10 of them with the
source dataset are used for training and the rest are used for
testing.

To evaluate the efficacy of our method, we select several
popular transfer subspace learning algorithms as the baseline
methods, including joint distribution adaptation (JDA) [19],
transfer joint matching (TJM) [20], latent sparse domain trans-
fer learning (LSDT) [21], feature selection based transfer sub-
space learning (FSTSL) [6], transfer sparse discriminant sub-
space learning (TSDSL) [7], guide subspace learning (GSL)
[22], and coupled discriminant subspace alignment (CDSA)
[10]. Additionally, we select two popular traditional subspace
learning methods, i.e., principal component analysis (PCA) [23]
and linear discriminant analysis (LDA) [24], for comparison.
We choose the linear SVM as the basic classifier for all the
methods and use the weighting average recall (WAR) as the ex-
perimental evaluation metric.

4.2. Results and discussions

We report the recognition performance of different algorithms
in Table 1. From this table, we obtain the following observa-
tions.

Firstly, the recognition performance of JIFA outperforms
that of all the baseline methods in most cases. This demon-
strates that our method can effectively solve the cross-domain
SER problem.

Secondly, the performance of all the transfer learning meth-
ods, including ours, is significantly better than that of traditional
subspace learning methods. This indicates that the transfer
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Table 1: Recognition performance (WAR%) of different algorithms in 12 tasks. The best performance is shown in bold.

Tasks Traditional methods Transfer learning methods JIFA
PCA LDA JDA FSTSL TJM LSDT GSL TSDSL CDSA

Em→En 36.02 38.60 38.14 37.21 39.53 37.67 33.05 43.25 42.65 43.02
En→Em 32.35 39.71 45.59 32.55 41.18 30.88 35.71 50.00 47.10 51.47
Em→Rm 22.22 26.39 25.93 32.87 29.63 32.50 36.19 38.09 44.08 45.36
Rm→Em 23.65 22.06 38.24 29.12 29.41 32.06 39.29 41.17 51.52 56.18
Em→Ba 40.00 34.29 34.29 38.57 37.14 37.14 39.15 37.28 50.20 43.21
Ba→Em 32.35 44.12 44.12 41.18 45.59 30.88 35.04 42.64 50.56 49.71
En→Rm 31.48 28.24 28.24 34.24 31.02 45.00 32.86 41.01 46.31 43.33
Rm→En 27.95 31.16 31.63 26.05 29.77 33.49 34.07 33.48 38.70 46.95
En→Ba 25.71 31.43 28.57 26.71 20.00 28.57 28.23 37.14 48.18 42.86
Ba→En 33.49 28.37 26.98 36.98 36.28 33.95 31.63 35.53 35.05 41.77
Rm→Ba 23.14 26.43 27.14 30.00 22.86 37.14 35.38 42.57 40.38 43.86
Ba→Rm 40.43 37.50 24.17 40.83 34.17 43.33 36.11 37.67 44.54 45.84
Average 30.73 32.36 32.75 33.85 33.05 35.22 34.72 39.98 44.93 46.13

learning algorithms can efficiently solve the domain mismatch
problem, whereas the traditional subspace learning algorithms
do not consider this problem.

Thirdly, in most tasks, our method is superior to the transfer
subspace learning methods, i.e., TSDSL and CDSA. The rea-
son might be as follows. We introduce a novel instance recon-
struction strategy, which considers the contribution of essential
features to better reflect the relationship between different do-
mains. Meanwhile, we align the feature subspace to facilitate
the information transfer between two domains.

4.3. t-SNE visualization

In this subsection, we give the visualization results of t-SNE
[25] in Fig. 2. Here we take the Em→Ba task as an example.
Fig. 2 (a) and (b) show the original data and the data projected
by the proposed method, respectively. From the figure, we can
notice that our method can make the source and target data fol-
low similar distributions, and the samples of the same category
are close to each other.

(a) Original data (b) JIFA

Figure 2: The t-SNE visualization of Em→Ba. The “+” and
“∗” indicate the source and target samples, respectively, and
different colors indicate different emotion categories.

4.4. Ablation study

To further prove the effectiveness of our method, we conduct an
ablation study. By setting α, β and γ to zero, we can get the fol-
lowing three special cases, i.e., JIFA1, JIFA2 and JIFA3. Fig. 3
shows the comparison results of JIFA and its three special cases.
From the figure, we can notice that JIFA achieves significantly
better performance than the three special cases, which proves
that both the weighting instance reconstruction and feature sub-
space alignment items can improve the recognition results.
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Figure 4: Convergence curves of our method.

4.5. Convergence analysis

As discussed in Sec. 3, an iterative optimization algorithm is
developed to solve our method. In this section, we study the
convergence property of our method. Fig. 4 shows the results
under six settings. From the figure, we find that the target values
decrease steadily with the increase of the number of iterations
and converge after 20 iterations. This result demonstrates that
our method has good convergence properties.

5. Conclusions
In this paper, we propose a new joint instance reconstruction
and feature subspace alignment method for cross-domain SER.
To be specific, we first develop an adaptive instance reconstruc-
tion strategy to reduce the divergence across domains. In this
way, the target samples can be linearly reconstructed by the tar-
get samples. In addition, we consider the contribution of the
essential features through an adaptive weighting matrix learn-
ing strategy. Furthermore, we develop a feature subspace align-
ment strategy to align the source and target subspace. Extensive
experimental results on four benchmark datasets verify the effi-
cacy of our method.
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