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Abstract
In cross-domain speech emotion recognition (SER), reducing
the global probability distribution distance (GPDD) between
different domains plays a crucial role in unsupervised domain
adaptation (UDA), which can be naturally measured by optimal
transport (OT). However, owing to the large intra-variations of
emotion categories, samples distributed in overlap may induce
negative transports. Moreover, OT only considers the GPDD
and therefore cannot efficiently transport hard-discriminative
samples without utilizing the local structures from intra-class
distributions. We propose a self-supervised learning (SSL)-
assisted optimal transport (SOT) algorithm for cross-domain
SER. First, we regularized OT’s transport coupling to mitigate
negative transports; then, we designed an SSL module to em-
phasize local intra-class structure to assist OT in capturing those
nontransferable acknowledge. Cross-domain SER experimen-
tal results showed that SOT dramatically outperformed state-
of-the-art UDAs.
Index Terms: speech emotion recognition, unsupervised do-
main adaptation, optimal transport, self-supervised learning

1. Introduction
Speech emotion recognition (SER) has great potential value in
human–computer interaction [1, 2, 3, 4, 5, 6]. However, SER
systems have difficulty maintaining robustness in the Out-of-
Domain (OoD) problem [7] because the testing speech data
are diverse and complex in real-world applications. This leads
to discrepancies in significant probability distributions between
training and testing conditions [8].

To address this issue, researchers have proposed various do-
main adaptation (DA) algorithms for cross-domain SER, which
aim to mitigate domain differences between training and test-
ing data [8]. Such algorithms can be broadly categorized into
supervised DA (SDA) or unsupervised DA (UDA) algorithms
based on the availability of label information in the target data.
Discriminative subspace alignment algorithms [9, 10] have been
employed in SDA to mitigate domain differences in SER, and
generative target sample methods [11, 12] have also received
attention with the development of generative adversarial net-
works (GANs). However, in practical scenarios, the target emo-
tion data are often completely unlabeled, leading to UDA being
more practical. Most UDA strategies for SER are currently de-
veloped based on an adversarial training strategy [13]. Such
policies aim to guide emotional classifiers that cannot to dis-
tinguish the latent domain distribution of source or target ut-
terances, thereby mitigating domain mismatches [7, 14, 15].
Additionally, some studies have attempted to calibrate domain
information using intra-class relations [16, 17]. However, as
various speakers express emotions differently and in different

environments, the boundaries between different emotion cate-
gories are unclear [18, 19]. Consequently, the above methods
often align domain information and sacrifice intrinsic emotion
information simultaneously, especially when using adversarial
training methods. In contrast, the global probability distribu-
tion distance (GPDD) measures the global relationship between
two probability distributions, thereby facilitating the transfer of
the source probability distribution to the target one while main-
taining the intrinsic emotional representations. Unfortunately,
current UDAs in SER do not consider GPDDs and may even
undermine them [18, 20]. The aforementioned limitations often
reduce the robustness of existing cross-domain SER UDAs in
real-world scenarios, particularly in cases involving language,
background noise, and utterance duration mismatches.

Concerning the global probability distribution distance
alignment, optimal transport (OT) [21] provides natural mathe-
matic formulations and has been intensively applied in the ma-
chine learning field [22]. OT converts one probability distribu-
tion shape to another shape with the least effort based on the
geometry difference. However, the correlations between dif-
ferent emotions are related to the properties of human emotion
expression and perception [7], resulting in unclear boundaries
of different target emotion categories [19]. The distribution of
these samples in overlapped regions between different emotions
often leads to OT computing massive negative transports (i.e.,
negatively transporting the speech samples from different emo-
tional categories’ samples), dramatically reducing adaptation
performance. Moreover, OT only considers the GPDD with-
out utilizing the local structures from intra-class distributions,
wasting the emotional representations in the local intra-class
structure, especially in hard-discriminative samples. However,
related work modeling these wasted emotional representations
is still limited in cross-domain SER.

To solve these problems, we propose an unsupervised
adaptation framework for cross-domain SER, known as self-
supervised learning-assisted optimal transport (SOT). Our ba-
sic assumption is shown in Fig. 1, which is used to measure
the global probability distribution distance between different
domains effectively; in addition, the local intra-class structure
information in target emotional samples is explored. Specifi-
cally, a margin regularization was designed into OT to inhibit
the negative transports (the red dash-line in Fig. 1), achiev-
ing more effective measures for GPDD of different domains.
Moreover, we propose the self-supervised learning assistance
exploration (SSLAE) module to emphasize the local intra-class
structure to assist OT in capturing those emotional representa-
tions, especially in nontransferable samples. The contributions
of this paper are listed as follows:

1. We propose margin regularized OT (MOT) for SER,
which mitigates negative transports, achieving effective mea-
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Figure 1: The basic assumption of our proposal. Black line: cor-
rect transports; red dashed line: negative transports. In this figure, the
negative transports are restricted to achieve effective measures to the
GPDD between different domains. The nontransferable local structures
from intra-class distributions are explored by SSLAE.

sure of the GPDD between different domains (Section 2.2.1);
2. We propose SSLAE to assist OT in capturing emotional

features within local intra-class structures, rather than measur-
ing the GPDD solely (Section 2.2.2);

3. We propose a UDA with the siamese framework for
SER, called SOT. We conducted three SER experiments, with
a mismatch in language, background noise, and audio dura-
tions, which were designed using three well-known SER cor-
pora IEMOCAP [23], EMODB [24], and CREMA-D [25]. Ex-
perimental results show that the proposed SOT achieved state-
of-the-art performance in the OoD SERs (Section 3).

2. Proposed Methods
The proposed SOT is a siamese framework comprising an emo-
tion classifier, a margin regularized OT (MOT) alignment mod-
ule, and a self-supervised learning-assistance exploration (SS-
LAE) module. Fig. 2 illustrates the architecture of the proposed
SOT. In the training stage, our UDA’s emotion encoders share
weights, and during inference, it only retains one encoder to
produce robust emotion predictions. In Fig. 2, a supervised
emotion classifier aims to learn emotional knowledge in the
source data. Moreover, to mitigate domain discrepancies, we
jointly train the emotion classifier with the MOT and SSLAE
branches, emphasizing the GPDD and local intra-class struc-
ture, respectively. The MOT alignment module calculates the
transport cost of the source and target domains by the joint
probability distributions (i.e., marginal and conditional distri-
butions), based on which a margin regularization is proposed to
filter the negative transports between different emotional sam-
ples. More importantly, the SSLAE module is proposed to as-
sist OT in exploring the local intra-class structure, especially
in hard-discriminative samples (red samples in Fig. 1). The
SSLAE can learn meaningful domain variables and emotional
representations using only positive sample pairs with a siamese
architecture. Conversely, existing OTs overlook these structural
representations. Next, we introduce the basic theory of domain
adaptation in SER and the proposed SOT.

2.1. Domain adaptation for SER

Given a source domain data set Ds={(xsi ,ysi )}i=1,..,N , and
a target domain data set Dt=

{(
xti,y

t
i

)}
i=1,..,M

(in the UDA
task, Dt is un-labeled). Due to domain changes (e.g., language
mismatch), emotions’ probability distributions under different
domains are changed significantly, i.e., ps (x,y) 6= pt (x,y).
The purpose of domain adaptation is to mitigate such discrepan-
cies and train an emotion category classifier that can accurately
classify speech samples in the target domain.

2.2. Proposed self-supervised learning-assisted OT

The proposed UDA framework follows the deep speech emo-
tion recognition model, which is defined below:

ŷ = f(x; θGf , θGy ) = Gy ◦Gf (x); e = Gf (x), (1)

Figure 2: The details of the proposed SOT adaptation framework.

where Gf (·) and Gy(·) are the embedding extractor and classi-
fier transforms with parameter sets θGf and θGy , respectively.
e is the embedding, and ŷ denotes the estimated emotion la-
bel. Fig. 2 shows the proposed SOT. This includes two un-
supervised domain adaptation modules, MOT (Section 2.2.1)
and SSLAE (Section 2.2.2), and a supervised emotion classifier
(Section 2.2.2). Here, we describe them in detail.

2.2.1. Margin regularized OT

Optimal transport (OT) [21] is an effective measure to main-
tain intrinsic emotional features during UDA by calculating the
GPDD based on the geometric shape of the distributions. Math-
ematically, the OT distance between the source ps and target pt

distributions is defined as follows:

dOT(ps, pt)
∆
= min
γ∈∏

(ps,pt)

∑

i,j

C(zsi , z
t
j)γ(z

s
i , z

t
j), (2)

where γ is the transport coupling between the two domains, and
C(zsi , z

t
j) is the transport cost between examples zsi and ztj that

are sampled from distributions ps and pt, respectively.
Through Eq. (2), we design an unsupervised domain adap-

tation framework for SER, as shown in the yellow block of Fig.
2. Owing to the unclear boundaries of different emotion cate-
gories in an unknown target domain [7], both the joint distribu-
tions (i.e., marginal distribution p(e) and conditional distribu-
tion p(y|e)) are considered to calculate the transport cost ma-
trix. The distribution difference across domains can be aligned
by minimizing the following joint cost function:

Cadpt(x
s,xt) = αCfea(Gf (x

s), Gf (x
t)) + βCcls(f(x

s), f(xt)),

(3)
where Cfea(·) and Ccls(·) measure the distribution cost of
marginal and conditional predictions, respectively. Euclidian
distance is used to compute Cfea(·) and Ccls(·) [26]. α and β
are the weighting coefficients for these two costs, respectively.
Eq. (3) measures the distribution discrepancy across domains,
and correspondingly, the adaptation loss function based on Eq.
(2) is defined as follows:

LOT(p
s, pt) = min

γ∈∏
(ps,pt)

∑

i,j

Cadpt(x
s
i ,x

t
j)γ(x

s
i ,x

t
j), (4)

where xsi and xtj are the source and target samples (i and j are
sample indexes), respectively.

Negative transfer in OT occurs due to the probabilistic alias-
ing of hard-discriminative samples, which are often located in
regions where different emotions overlap (the red dashed line
in Fig. 1). To avoid negative transports, it is necessary to limit
the transfer of target samples that are too distant in probability
from the source samples. Based on the above consideration, we
propose a margin regularization to filter these couplings with
excessive costs, by which we set a threshold b of the transport
cost to obtain the admissible couplings as:

wi,j =

{
1, C(xsi ,x

t
j) ≤ b

0, C(xsi ,x
t
j) > b.

(5)

In this equation, if the transport cost is smaller than b, the cou-
pling between the two samples is allowed; otherwise, the cou-
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Table 1: Statistics of the per-emotion recognition corpus in experi-
ments.

Corpus Speakers Neutral Happy Angry Sad
IEMOCAP [23] 10 1,708 1,636 1,103 1,084
EMODB [24] 10 79 71 127 62
CREMA-D [25] 91 1,087 1,271 1,271 1,270

pling is discarded. However, this hard controlling of the cou-
plings may pose a risk in discarding admissible couplings or
accepting non-admissible couplings. Therefore, we designed
a soft weighting on the coupling to smooth the regularization,
which is defined below:

w̃i,j = σ
(
−scale ∗

(
C(xsi ,x

t
j)− b

))
, (6)

where σ(·) is a sigmoid function, and scale is a scaling param-
eter. In this work, we set b=1, and scale parameter scale=5.0.
Finally, the loss function defined in Eq. (4) is changed to:

LMOT(p
s, pt)= min

γ∈∏
(ps,pt)

∑

i,j

C(xsi ,x
t
j)γ(x

s
i ,x

t
j)w̃i,j . (7)

In this formulation, the soft weighting w̃i,j , defined in Eq. (6),
can be regarded as a margin regularization of coupling and can
be explicitly added to fulfill the function of MOT.

2.2.2. SSL-assisted exploration

In Section 2.2.1, we regularized the transport coupling of OT to
mitigate the negative transports. Although OT can effectively
measure the GPDD between different domains, it cannot cap-
ture the local structures from intra-class distributions, particu-
larly in hard-discriminative samples. To explore these repre-
sentations in the target domain, inspired by SimSiam [27], we
propose the SSL assisted exploration (SSLAE) module to ex-
plore the latent emotion representations involved in the target
samples that cannot be utilized by OT. The architecture of the
SSLAE is depicted in the blue block of Fig. 2. In this figure, a
target utterance is randomly cropped to two views: x3 and x4

(3s duration). Then, a siamese network [27] where one branch
with stoped-gradient utilizes x3 and x4 to learn the discrimina-
tive class structure and latent domain information on the target
data. The predictor include two fully-connection layers with
the ReLU activation function. In the training stage, SSLAE at-
tempts to bring the probability distance of prediction p close to
e4 by minimizing the negative cosine similarity, which is de-
fined as follows:

D(v,u) = − v

||v||2
· u

||u||2
, (8)

where v and u are the compared vectors. The loss function
for the part with the self-supervised assistance module is as fol-
lows:

LSSL=
D(p3, stopgrad(e4))

2
+
D(p4, stopgrad(e3))

2
, (9)

where stopgrad denotes the stop-gradient propagation for the
network. In the training stage, the encoder on x3 receives the
stop gradient from e3 in the first term but receives gradients
from p3 in the second term (and vice versa for x4).

In addition to adaptation loss functions, a classification loss
is adopted in our UDA. Here, the cross entropy (CE) loss with
Softmax LsCE(·) is used. Therefore, the total loss includes the
source emotion classification loss and two adaptation losses:

LTotal= min
γ,θGf

,θGy

(LsCE (·) + ηLMOT (·) + µLSSL(·)) , (10)

where η and µ are the weighting coefficients.
In sum, three modules should be optimized in SOT: the

emotion classifier (the green block in Fig. 2); MOT-based adap-
tation loss (Eq. (7), the yellow block in Fig. 2); and SSL explo-
ration loss (Eq. (9), the blue block in Fig. 2).

Table 2: Baseline performance in the source data (UA and WA).
System Years UA (%) WA (%)
HuBERT [5] 2021 - 68.90
Residual-BLSTM [31] 2022 70.11 69.31
MHSA-FACA [32] 2022 72.01 72.83
Ours 2023 69.73 70.01

3. Experiments
3.1. Experimental configurations

Details of the source and target domains: To investigate
UDAs and verify our proposed hypotheses, we analyzed three
common OoD problems in SER and utilized speech data from
four emotional categories (neutral, happy, angry, and sad) in
the audio modality, consistent with previous studies. Table 1
presents the statistics of the speech corpora used.
• Task 1: Language mismatch SER. Under this condition,

the source audio samples were sampled from IEMOCAP [23], a
well-known SER data set in English. The German SER corpus
EMODB [24] was selected as the target domain.
• Task 2: Recording conditions mismatch SER. The pres-

ence of background noise can pose a significant challenge for
SER systems, particularly because it can adversely impact the
ability of models to discern and accurately classify prosodic fea-
tures of speech, which are critical for emotion detection [7]. We
selected IEMOCAP to conduct these sub-experiments. 5-fold
cross-validation was performed. Then, 80% samples of IEMO-
CAP (clean speech) were treated as the source data, and the
remaining samples were added with background noise (noise,
music, and babble) from MUSAN [28] at three signal-to-noise
ratio (SNR) levels (0, 5, and 10 dBs) to generate three target
domain data sets.
• Task 3: Audio duration mismatch SER. Overly short

speech utterances can result in the loss of important emotional
information, which can negatively impact the ability of SER
models to associate contextual emotional cues and ultimately
lead to a decrease in performance. To further investigate the
generalization of the proposed SOT, we conducted SER experi-
ments under this condition. IEMOCAP (4.46-s average utter-
ance duration) was the source domain, and CREMA-D [25]
(2.63 s) was the target domain.
SER system: The input acoustic feature was extracted from
Hubert-Base [5, 6], which had the same configurations as that
used in [29]. ECAPA-TDNN [30] with 512 dimensional was
used as the backbone model (6.2M parameters). To investigate
the proposed SOT more comprehensively, we not only com-
pared its performance with that reported in existing studies but
also implemented several UDA methods in SER to run the com-
parison experiments based on our SER benchmark, including
the domain adversarial training (DAT) [15] and soft label-based
domain adversarial training (DASL) [7] model. In the training
stage, adam with momentum 0.9, weight decay 4e-6, and initial
learning rate 0.001 was utilized. The size of mini-batch was 16.
α and β in Eq. (3) were empirically set as 0.1, 0.001. In the
evaluation stage, unweighted and weighted accuracies (UA and
WA) were used as the evaluation metrics.

3.2. Experimental results

We evaluated the accuracy of our SER system in the source do-
main, achieving 69.7% UA and 70.0% WA (5-fold leave-one-
session-out cross-validation was performed), as shown in Ta-
ble 2, which matches the state-of-the-art UDA’s performance.
Then, we established systemic domain adaptation benchmarks
for three OoD tasks based on our SER system.
• Task 1: Language mismatch SER. The experiment in-

volved training the model on the source set (IEMOCAP) and
running the UDA algorithm on the target domain (EMODB)
without any label information. The results presented in Table 3
show that the SER models had limited performance under the
OoD problem, despite achieving good accuracy in the source
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Table 3: Adaptation performance on the language mismatch condition.
Source domain: IEMOCAP; target domain: EMODB.

Description Adaptation method UA (%) WA (%)
Zong et al. [9] DALSR 63.23 66.08
Liu et al. [34] DoSL 62.91 67.85
Ahn et al. [35] FLUDA 56.80 -
Liu et al. [36] TRaSL 61.02 65.49
Our implement No adaptation 58.69 57.74
Our implement DAT 60.29 59.81
Our implement DASL 62.88 62.72
Proposed SOT 70.65 70.39

Table 4: Adaptation performance on the background noise OoD tasks
(based on IEMOCAP) with different SNR levels.

Description Method 0 dB 5 dB 10 dB
UA(%) WA(%) UA(%) WA(%) UA(%) WA(%)

Tiwari et al. [12] GNM 46.34 - 50.48 - 55.24 -
Our implement No adap. 44.33 41.98 52.29 51.77 59.40 59.60
Our implement DAT 46.70 46.42 51.49 51.40 59.85 59.94
Our implement DASL 48.01 47.58 52.65 52.57 61.21 61.28
Proposed SOT 50.42 50.43 56.10 56.17 63.79 63.99

domain. For instance, our baseline model achieved 69.7% UA
on IEMOCAP but only 58.7% UA on EMODB. While adver-
sarial training was found to mitigate language OoD reduction,
as evident in DASL’s 62.9% UA on EMODB, the performance
gain of the method was limited because it destroyed the intrin-
sic characteristics of emotion representation. In contrast, the
proposed SOT achieved a remarkable 70.7% UA on the target
domain, representing a relative increase of 11% compared to
the best baseline system. This outcome can be attributed to the
proposed SOT’s ability to reduce domain discrepancies through
the GPDD measurement and latent variable exploration, which
maximally preserves the intrinsic features of the discriminant.
• Task 2: Recording conditions mismatch SER. Maintain-

ing the performance of SER systems is challenging when back-
ground noise impairs prosodic features that are critical for emo-
tion detection [7]. The performance of adversarial training-
based UDA methods, such as DAT and DASL, in adapting to
this challenge was limited, as demonstrated in Table 4. By con-
trast, the proposed SOT achieved satisfactory performance and
outperformed the state-of-the-art systems.
• Task 3: Audio duration mismatch SER. The experimental

results are presented in Table 5, where the best UDA system
based on adversarial training achieved a limited 52.4% UA. In
contrast, the proposed SOT achieved remarkable performance
with a 60.4%, indicating an 8% relative increase compared to
the state-of-the-art system (CWW + Unsup. [33]).

In summary, we conducted experiments on three challeng-
ing yet recurring OoD problems in cross-domain SER to eval-
uate our proposed hypothesis. The experimental results show
that our UDA framework achieved state-of-the-art performance,
attributed to its ability to effectively mitigate domain differ-
ences while preserving the intrinsic information in discriminat-
ing emotion.

4. Discussions
To identify the separate contributions of the proposed MOT and
SSLAE, we conducted an ablation experiment on the language
mismatch condition. The results are shown in Table 6, demon-
strating the effectiveness of each proposed module.

Although both the GPDD and intra-class structure informa-
tion are important, finding their appropriate balance in UDA (η
and µ in Eq. (10)) is crucial for achieving optimal adaptation
performance. For this, we conducted SER experiments on the
above three conditions. The results are summarized in Fig. 3, in
which the proposed SOT achieved the best performance for the
language mismatch task when the weights of MOT and SSLAE
Table 5: Adaptation performance on the duration mismatch condition.

Description Adaptation method UA (%) WA (%)
Ahn et al. [33] CWW 53.80 -
Ahn et al. [33] CWW + Unsup. 55.80 -
Parry et al. [37] CR 53.71 -
Our implement No adaptation 48.88 46.08
Our implement DAT 50.29 48.66
Our implement DASL 52.40 50.99
Proposed SOT 60.39 59.70
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Figure 3: Performance (UA and WA) based on SOT training while
varying weights of MOT (.1) and SSLAE (.2) for three OoD tasks. Task
1: (a); task 2: (b); task 3: (c).
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Figure 4: Confusion Matrix to show the best classification accuracies
without adaptation (.1) and with SOT adaptation (.2) for three OoD
tasks. Task 1: (a); task 2: (b); task 3: (c).
were 1.0 and 0.01. The best performance for the adaptation in
background noise was achieved under η = 0.5 and µ = 0.01.
In the utterance duration mismatch task, SOT obtained the best
performance under η = 0.5 and µ = 0.005, respectively.

Furthermore, to properly study adaptive systems, it is cru-
cial to evaluate the performance improvement of each emo-
tion category between the unadapted baseline and the proposed
adaptive system. In Fig. 4, we present the confusion matrix
to illustrate the observed changes. By comparing figures 4
(a/b/c.1) and (a/b/c.2), we can see that the proposed SOT signif-
icantly improved the accuracy of neutral, angry, and sad, while
only slightly affected the accuracy of happy. Additionally, the
SOT system could correct most of the sentiment errors in the
target domain for other unmatched scenes.

Table 6: Ablation studies for SOT under the language mismatch.
SOT No SSLAE No MOT No SSLAE and MOT

UA (%) 70.65 67.96 62.19 58.69
WA (%) 70.39 67.69 62.52 57.74

5. Conclusion
In this study, we proposed SOT, an unsupervised domain adap-
tation algorithm for cross-domain SER. We first regularized
OT’s transport coupling to mitigate negative transports, ensur-
ing that OT can effectively measure the GPDD of different emo-
tional categories. Then, we designed an SSLAE module to
emphasize local intra-class structure, assisting OT in capturing
the emotional representations, especially in hard-discriminative
samples. Experimental results indicate that the proposed SOT
dramatically outperformed the state-of-the-art UDA algorithms
in cross-domain SER. It would be interesting for future works
to decide whether to transport the local feature or the GPDD
according to the individual speaker characteristics.
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