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Abstract
Despite the remarkable success of convolutional neural net-
works (CNNs) in voiceprint recognition, we still lack a com-
prehensive understanding of the specific features extracted by
these models. To address this issue, we adopt an attribution
approach in this paper to explain the voiceprint identification
model and visualize the relevant features. Using five attribution
methods, we successfully identify the features extracted by the
ECAPA-TDNN model and confirm the reliability of our attribu-
tion techniques.We also explore two distinct methods for visual-
izing voiceprint features, with one approach aimed at interpret-
ing features in unknown speech and the other focused on known
speech. Through the attribution method, we are able to more
precisely capture voiceprint features within speech data without
significantly impacting the performance of the voiceprint recog-
nition model. It would help us to do a more detailed study of
the voiceprint features in the future.
Index Terms: visualization, voiceprint features, attribution

1. Introduction
With the remarkable success of deep learning [1, 2, 3] comes an
increasing concern about its black-box nature. The lack of in-
terpretability in machine learning models can negatively impact
the level of trust in deep learning systems. This is especially
true for applications where machines make predictions or deci-
sions related to critical aspects of human life, health, safety, and
property. The interpretability of deep learning models [4, 5]
has become a crucial factor in determining whether users can
trust these models. By providing insights into the reasoning be-
hind the model’s predictions and decisions, interpretability can
improve the transparency of the system, enhancing the user’s
confidence and trust. As a result, researchers have been explor-
ing various approaches to improve the interpretability of deep
learning models, making them more accessible and understand-
able to users.

The remarkable success of deep convolutional neural net-
works (CNNs) in various fields is closely tied to the concept of
interpretable learning. By utilizing various visualization tools,
it is possible to interpret the decisions made by these models
and continuously optimize them. While much of the research
in voiceprint recognition models has focused on improving the
accuracy [1, 6, 7] of predictions and studying speech represen-
tations [8, 9, 10, 11], these studies have greatly facilitated the
extraction of voiceprint features by deep CNNs and the inter-
pretation of voiceprint recognition model predictions using vi-
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sualization tools. However, current research on visualization
tools is more prevalent in the field of computer vision, such as
the use of imputation methods to trace model predictions back
to the input image and visualize the imputation results. This
enables the identification of which pixels in the input image are
influential in determining the output results, providing intuitive
insights into the model’s decision-making process. Despite the
lack of attention to visualization tools in voiceprint recognition,
they offer great potential for improving the interpretability and
trustworthiness of these models.

Currently, the mainstream attribution methods used for
deep neural networks include LIME [12], Integrated Gradients
[13], DeepLift [14], DeconvNet [5], Guided Backpropagation
[15], CAM [16, 17], SHAP [18, 19] and other methods. In [13],
The authors of this paper identify two basic axioms of attri-
bution: Sensitivity and Implementation Invariance, and design
a new attribution method called Integrated Gradients based on
these axioms. Many attribution methods before this paper did
not satisfy these two axioms, and Integrated Gradients is sim-
ple to use and does not require modifying the structure of the
original model.In [12], The authors use interpretable models
such as linear models and decision trees to locally approximate
the prediction of the target black box model. This method de-
tects changes that occur in the output of the black box model by
slightly perturbing the input and trains an interpretable model
at the point of interest based on this change. The SHAP [18]
model is a more versatile approach to model interpretability,
which can be used for both global and local interpretations of
the relationship between predicted values and certain features
in a single sample. SHAP constructs an additive explanatory
model in which all features are considered as ”contributors.”
For each prediction sample, the model generates a prediction
value, and the SHAP value is the value assigned to each feature
in that sample. In [20], The authors use three variants of CAM
(Grad-CAM [21], Score-CAM [22], and Layer-CAM [23]) to
visualize the voiceprint features, making this paper the only
one to explain the features extracted by the voiceprint recog-
nition model. The main idea is to determine the position of the
voiceprint features on the spectrogram by masking the effect of
the part of the input features on the output results. Their experi-
ments on ResNet34SE [24] demonstrate the effectiveness of the
three methods. In this paper, we first experimented the two im-
plementation paths on images as a way to verify the feasibility
of the method, and finally on ECAPA-TDNN. The contributions
of this paper are as follows:
• In this paper, we successfully use five attribution methods ap-

plied to the voice recognition model and make a verification
of the reliability of the five attribution methods.

• We used two ways to analyze the voiceprint features extracted
by the voiceprint recognition model, one for known speech
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(speech in the training set) and the other for unknown speech
(speech not in training).

2. Related work
2.1. Neural Network Interpret

In [25], the authors provide an exhaustive classification of
the interpretability of neural networks. The interpretability is
classified into two major categories: passive [26] and active
[27, 28]. Passive: Post hoc explain trained neural networks.
Active: Actively change the network architecture or training
process for better interpretab.

It has been noted that the captum toolkit includes a large
number of attribution algorithms. These algorithms [29] have
been tried for the visualization of voiceprint features, and five
of them have been successfully applied in this study. However,
it is important to note that visualizing acoustic features is differ-
ent from visualizing features in computer vision. In computer
vision[30], we can easily observe whether important features
are visualized or not, whereas in the case of acoustic features,
it is difficult to determine if the features are actually visualized.
Therefore, to validate the visualization of acoustic features, an-
other experiment was designed using the attribution algorithm
backpropagation for acoustic features. The results of this exper-
iment demonstrated that the visualization of acoustic features
achieved in this study is reliable.

2.2. ECAPA-TDNN

ECAPA-TDNN, proposed in [1], has been widely regarded as
the state-of-the-art system in voiceprint recognition.

Table 1: The proposed ECAPA-TDNN architecture, which
mainly integrates three modules: SE-Res2Block, Multi-layer
feature aggregation and summation(MFA), Attentive statistic
pooling(ASP).

Layer name Output size Structure
Input - C = 512, 80 × T

conv1d 512 × T C, k=5, p=2
SE-Res2Block-1 512 × T C, k=3, d=2
SE-Res2Block-2 512 × T C, k=3, d=3
SE-Res2Block-3 512 × T C, k=3, d=4

MFA 1536 × T 3 × C, k=1, d=1
ASP 3072 × 1 -
FC 192 × 1 -

AAM-Softmax 1211 × 1 -

In deep learning models for voiceprint recognition, the final
classification layer FC is usually used to compute the loss dur-
ing training and to make predictions during testing. The embed-
ding layer, which outputs a fixed-length vector that represents
the input speech signal, is used as the input to the final classi-
fication layer. The purpose of the final classification layer is to
map the embedding vector to a specific speaker ID or speaker-
independent class label.

3. Methodology
3.1. Attribution algorithm

3.1.1. Integrated Gradients

In [13], the authors assume that there is a function F :
Rn ∈ [0, 1] representing a deep network, and an input x =

(x1, ..., xn) ∈ Rn. The authors define a tensor x′ =
(1, ..., 1) ∈ Rn ( When the input is a picture) as the baseline.
An attribution of the prediction at input x relative to a baseline
input x′ is a vector AF (x, x

′
) = (a1, ..., an) ∈ Rn. ai is the

contribution of xi to the prediction F (x). Here, ∂F (x)
∂xi

is the
gradient of F (x) along the ith dimension.

ai = (xi − x
′
i)×

∫ 1

α=0

∂F (x
′
+ α× (x− x

′
))

∂xi
dα (1)

3.1.2. SHAP

Define a simpler model as any interpretable approximation of
the original model. Let f be the original prediction model to
be interpreted and g be the interpreted model. Here we focus on
the local approach used to interpret the prediction f(x) based on
a single input x. As proposed in LIME: the explanatory model
typically uses a simplified input x′ that is mapped to the original
input via the mapping function x = hx(x

′), and when x′ ≈ z′,
the local approach attempts to ensure that g(z′) ≈ f(hx(z

′))

g(z
′
) = ϕ0 +

M∑

i=1

ϕiz
′
i (2)

where z′ ∈ [0, 1]M and M is the number of simplified input
features. The explanatory model calculates a contribution ϕi for
each feature xi, i.e., ϕi is the feature-attributed Shapley value
for feature i.The sum of the contributions of all feature attributes
approximates the output of the original model f(x) .

3.2. Realization path

3.2.1. Traversal Method

In this study, the speech data is first converted into Mel-
frequency cepstral coefficients (MFCCs), which are used as in-
put x = (x1, ..., xn) to the voiceprint recognition system F (x).
To establish a baseline, x′ is defined to be of the same type and
size as x, but with all elements set to 1.

e = F (x) (3)

Aei(x, x
′
) = (a1i, a2i, a3i, ..., ani) (4)

AF =
1

N
×

N∑

i=1

Aei(x, x
′
) (5)

After passing the input x through the voice recognition system
F (x) , a speaker embedding of output length N is obtained.
Each element in the speaker embedding e = (e1, ..., eN ) is
generated based on the input x, making it reasonable to use
each element(ei) in e as the results for the system prediction.
Aei denotes the attribution of the input to the ei in the speaker
embedding. Finally, AF can be understood as attributing input
x to the whole embedding. This is shown in Fig. 1.

3.2.2. Classification Method

Recently, researchers have applied attribution algorithms to
classification models. In other words, the model’s output is a
two-dimensional tensor corresponding to the probability of the
category predicted by the model, with the maximum probability
as the target of the attribution algorithm. However, researchers
usually take the speaker’s embedding as the model’s output in
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voiceprint recognition. And the classification layer is generally
placed in the loss. So borrowing from previous researchers, we
migrate the classification layer in the loss to the last layer of the
model. G(x) is our new model after adding the classification
layer, and AG is the attribution. This is shown in Fig. 2.

G(x) = FCAAM−Softmax(F (x)) (6)

AG(x, x
′
) = (a1, a2, a3, ..., an) (7)

Figure 1: The input is involved in training or not: the speech
goes through ECAPA-TDNN, the last layer of embedding is out-
put, and xi denotes the i-th value in the embedding.

Figure 2: Input needs to be involved in training, y is the result
of the model prediction.

Figure 3: Verify the reliability of the attribution algorithm.

3.3. Reliability

3.3.1. Realization of ideas

The verification process described in the paper involves using
the attribution method to identify important features in the in-
put speech and forming attribution values on the original speech
data points. These attribution values are then fed into the model
for training, and the final result is compared to the result with-
out the attribution method. If the final result is similar, the at-
tribution algorithm is deemed reliable, otherwise, it is deemed
unreliable. The paper explains that overwriting a part of the
data to continue training does not affect the accuracy of the fi-
nal voice recognition, which suggests that the data fed into the
model still contains the voice features. This process aims to
verify the reliability of the attribution algorithm when applied
to the voiceprint recognition model.

3.3.2. Make ready

The dataset used in the study, which is voxceleb1. This dataset
contains speech recordings of 1251 celebrities, extracted from
short video clips on YouTube. We chose this dataset because

it is publicly available and contains a large number of speak-
ers, making it suitable for training a voiceprint recognition
model. We trained an ECAPA-TDNN model on this dataset
and saved its parameters as model baseline. We also created a
model classification for voiceprint recognition by extracting the
FC layer from AAM-Softmax and connecting it to the embed-
ding of the last layer. The purpose of this study was to verify the
reliability of attribution methods when applied to the voiceprint
recognition model.

3.3.3. Validation

The process described here involves using the Integrated Gra-
dients algorithm with the input speech data, prection (predic-
tion result), model classification, and model baseline as inputs
to obtain the attribution value of important features. This at-
tribution value is then multiplied with the initial input speech
to obtain the resulting input of ECAPA-TDNN. Additionally,
to improve the efficiency of training the voiceprint recognition
model, all the voice data of voxceleb1 is processed by the at-
tribution algorithm and saved, so that during validation experi-
ments, only the processed data needs to be imported to ECAPA-
TDNN. This is shown in Fig. 3

4. Experiments
The reliability of the attribution method is critical to the accu-
racy and validity of the subsequent analysis of the voiceprint
features. The experiments in the study demonstrated that the
attribution method used is reliable and produces results that
are generally consistent with the original ECAPA-TDNN model
training. The use of masks and different thresholds in the val-
idation experiments allowed for the filtering out of smaller at-
tribution values, which slightly reduced the accuracy of the re-
sults, but the effect on the visualization was negligible. In fact,
the trade-off between accuracy and visualization efficiency is
worthwhile(compare Figure 5 and Figure 6), as it allows for the
identification of important voiceprint features more efficiently.
Overall, the reliability of the attribution method is important in
forensic identification and the study supports the usefulness of
the method in identifying important voiceprint features.

Table 2: Comparing the effect of adding attribution methods
with and without attribution methods and changing the thresh-
old value of mask on model performance.

Model Attribution algorithm EER(%)

ECAPA-TDNN

None 3.48
Integrated Gradients 4.21
Integrated Gradients+mask(0.1) 4.29
GradientsShap 4.55

To return to the topic, our main work is to explain the
voiceprint recognition model. In order to understand the
voiceprint features extracted by the voiceprint recognition
model, we successfully applied five attribution algorithms and
two pathways for the visualization of the voiceprint features.
This is shown in Figure 4, Figure 5, and Figure 6.

Based on the analysis of Fig. 5, we can draw several con-
clusions: Firstly, The voiceprint recognition system still re-
lies on non-speaker information in the final extracted high-
level features, indicating that other factors beyond individual
voiceprint information influence the system’s classification of
speakers. Secondly, The darker color in the figure indicates
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Figure 4: Visualization of voiceprint features for four attribution methods other than the attribution algorithm Integrated Gradients.

the feature’s robust association with the speaker, suggesting
that these features are more reliable for identifying speakers.
Thirdly, The Traversal Method, which traverses all the elements
in the embedding, produces a darker color than the Classifica-
tion Method, indicating that it enhances the voiceprint features
and leads to more reliable results. Overall, these findings sug-
gest that the voiceprint recognition system relies on more than
just individual voiceprint information when classifying speak-
ers.

Figure 5: Comparison of two ways to visualize voiceprint fea-
tures. input: MFCCs.

Based on the validation experiments, it was found that
setting the mask threshold to 0.1 (filtering out attribution
values less than 0.1) resulted in the training of the voiceprint
recognition model being one percentage point smaller than the
EER without adding mask. Although this result is acceptable
for the visualization of voiceprint features, it is essential to
keep in mind that setting the mask threshold may result in loss
of some important information.Setting the threshold of the
mask helps to visualize the voiceprint features with different
levels of importance, which can reduce the time required to
find the voiceprint features of a particular person during the
identification of voiceprint patterns. However, it is important to
carefully select the threshold value to ensure that the resulting
feature captures the essential characteristics of the voiceprint
accurately. In summary, setting the mask threshold can aid in
visualizing voiceprint features, but it is necessary to carefully
balance between information loss and reducing the time
required for feature identification. As shown in Fig. 6

As shown in Figure 4, based on the experiments conducted
with the four additional attribution algorithms, it has been
observed that the shapley value sampling algorithm performs
the worst in terms of sound pattern visualization. The vi-
sualized voiceprint features are less compared to the other
four algorithms, as can be seen from the figure. Additionally,
it has been observed that the human voiceprint features are
mainly concentrated in the fundamental frequency, specifically

Figure 6: Features of different importance are extracted accord-
ing to the threshold value.

in the first and second resonance peaks. Finally, it is noted
that the visualized voiceprint patterns generated by any of
the algorithms contain non-voiceprint pattern information.
This indicates that the current voiceprint recognition systems
do not effectively separate the voiceprint information from
non-voiceprint information.

5. Conclusions
The use of attribution methods in voiceprint recognition can
help professionals quickly identify important voiceprint fea-
tures that contribute to identifying the speaker’s identity. This
can improve the efficiency and accuracy of the identification
process. Additionally, by comparing the performance of differ-
ent voiceprint recognition systems using attribution methods,
professionals can choose a system that better suits their needs
and is more reliable in identifying voiceprints. Overall, the
use of attribution methods can greatly enhance the capabilities
of professionals in forensic identification, making the process
faster and more accurate.

It is interesting to note that while the attribution methods
were effective in explaining the voiceprint recognition model,
they did not completely decouple the content of the speech
from the voiceprint features. This suggests that there may be
non-voiceprint features present in the visualizations obtained
through attribution. The research highlights the importance
of evaluating voiceprint recognition models beyond just their
accuracy, particularly in fields such as voiceprint identifica-
tion and criminal investigation. Moving forward, we plan to
improve the generalization ability of the model by focusing
on stable learning and decoupling content information from
voiceprint features. This will enhance the model’s ability to
accurately extract voiceprint features and improve its reliability
in practical applications.
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