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Abstract
Self-supervised learning (SSL) based speech pre-training has
attracted much attention for its capability of extracting rich rep-
resentations learned from massive unlabeled data. On the other
hand, the use of weakly-supervised data is less explored for
speech pre-training. To fill this gap, we propose a weakly-
supervised speech pre-training method based on speaker-aware
speech data. It adopts a similar training procedure to the widely-
used masked speech prediction based SSL framework, while
incorporating additional target-speaker enrollment information
as an auxiliary input. In this way, the learned representation
is steered towards the target speaker even in the presence of
highly overlapping interference, allowing potential applications
to tasks such as target speech recognition. Our experiments
on Libri2Mix and WSJ0-2mix datasets show that the proposed
model achieves significantly better ASR performance compared
to WavLM, the state-of-the-art SSL model with denoising capa-
bility.
Index Terms: weakly-supervised learning, self-supervised
learning, speech pre-training, target speech recognition

1. Introduction
Recently, self-supervised learning (SSL) based pre-training has
greatly advanced research progress in speech processing, show-
ing great potential in a wide range of downstream speech
tasks [1, 2]. Existing SSL models can be roughly grouped into
three categories based on their pre-training objectives, i.e., gen-
erative [3, 4, 5, 6], contrastive [7, 8, 9, 10], and predictive [11,
12, 13, 14] approaches. These SSL models are usually pre-
trained on massive unlabeled data in an application-agnostic
manner [15], and then fine-tuned on downstream speech tasks
by updating either the entire network or only a small amount of
parameters [16, 17]. The learned representations are found to be
versatile for a series of speech tasks such as automatic speech
recognition (ASR) [18], text-to-speech (TTS) [19], speaker ver-
ification (SV) [20], speech enhancement (SE) [21], and so on.

While existing SSL models are highly effective in extract-
ing rich representations from single-speaker utterances, the ca-
pability of eliminating the interference from overlapped speech
is still limited [12, 21]. However, this capability is especially
important when tackling the well-known cocktail party prob-
lem [22, 23], where multiple talkers speak simultaneously in a
noisy environment. It is therefore natural to ask whether we
can improve the current speech pre-training paradigm to take
the above problem into consideration. Recently, there are a
few studies working on this direction. Chen et al. [12] pro-
poses to augment the input speech by overlapping with back-
ground speech or noise to force the SSL model to learn masked
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speech denoising and prediction at the same time. Wang et
al. [17] proposes to explicitly predict multiple labels corre-
sponding to all utterances in the input overlapped speech, en-
abling the SSL model to learn denoising and separation in paral-
lel with masked speech prediction. These efforts still fall within
the self-supervised speech pre-training framework, where no
additional information other than the speech itself is exploited.

In this paper, we aim to explore a new speech pre-
training direction, namely weakly-supervised speech pre-
training, which allows the use of additional information (weak
labels) about the data to facilitate better speech pre-training.
While similar ideas have been explored in computer vision
and natural language processing [24, 25], it has not been well
studied in the area of speech processing. Our motivation is
that the collected speech data for pre-training may be anno-
tated with meta information such as the relative speaker iden-
tity. While SSL methods generally omit such information dur-
ing pre-training, it can be helpful for the related downstream
tasks if we take advantage of it properly during pre-training.

Therefore, in this paper, we make a first attempt at weakly-
supervised speech pre-training using speaker-aware data. The
only assumption is that all speech samples can be divided into S
groups, each corresponding to a different speaker. The speaker
division can be obtained from either clustering [26] or the data
annotation1. Based on this assumption, we present a novel
speech pre-training model—Target-Speaker HuBERT, or TS-
HuBERT for short. It adopts the same masked speech predic-
tion objective as proposed in HuBERT [11], a widely-used SSL
model. During pre-training, the main input speech is randomly
mixed with speech from a different speaker, and an auxiliary
speech sample from the same main speaker is provided to guide
the modeling of the main speaker’s speech. Taking both wave-
forms as input, the proposed pre-training model learns to pre-
dict the discrete targets of masked frames while eliminating the
interference in the overlapped speech. Furthermore, we inves-
tigate the effectiveness of the proposed TS-HuBERT model in
the downstream target speech recognition task, which aims to
recognize the target speaker’s speech in the overlapped speech.
Our experiments show that the proposed model achieves signif-
icantly better ASR performance compared to WavLM [12], the
state-of-the-art SSL model with denoising capability.

2. Weakly-supervised speech pre-training
2.1. Model design

Figure 1 presents the overview of the proposed TS-HuBERT
model. The entire model is built upon the well-established ar-
chitecture in [9, 11], which consists of a convolutional neural

1In this paper, we adopt the data annotation to simplify the discus-
sion, and leave the former for future investigation.

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

3517 10.21437/Interspeech.2023-1280



Target labels

Masked Prediction Loss

Z1 Z2 Z3 Z4 ZTZ'1 Z'2 Z'L

CNN Encoder

X1 [M] [M] [M] XTX'1 X'2 X'L

CNN Encoder

Target-speaker enrollment ! Main utterance "

R1 R2 R3 R4 RT

Shared

Rel. Pos. Encoding Relative Positional Encoding

M
ain U

tt. 
Bias

Enrollm
ent 

Bias

Not used

#!"#$%% #&'("Transformer Encoder

Figure 1: Overview of the proposed weakly-supervised speech
pre-training model based on speaker-aware speech data.

network (CNN) encoder followed by a Transformer encoder.
In addition, following WavLM [12], the gated relative position
bias [27] is also employed in the self-attention mechanism in
Transformer encoder layers to boost the performance. The in-
put to the proposed model consists of a main utterance y for
masked speech prediction [11] and an auxiliary input e con-
taining information about the target speaker. The details of the
pre-training data are presented in Section 2.3.

Now, we consider integrating the target-speaker informa-
tion with the aforementioned backbone. In the literature, two
types of data are often used to provide such information, i.e.,
an enrollment audio from the target speaker [28] and a speaker
embedding vector [29]. While the latter can directly provide a
compact and efficient target-speaker representation, it entangles
the pre-training model with a specific external speaker embed-
ding model. This inevitably reduces the generalizability and
flexibility of the speech pre-training model. Therefore, we opt
for the raw enrollment audio as the auxiliary input and rely on
the pre-training model to extract the target-speaker information
implicitly. Inspired by the success of temporal concatenation-
based cross-modal modeling [30, 31, 32, 33], we propose to
fuse the two input streams via temporal concatenation. More
specifically, we first extract features for the enrollment e and
the main utterance y using the same CNN encoder:

X = CNN-Encoder(y) ∈ RT×D , (1)

X′ = CNN-Encoder(e) ∈ RL×D , (2)
where X and X′ are the main utterance feature and the enroll-
ment feature, respectively. T and L are the corresponding num-
bers of feature frames, and D is the feature dimension. Later,
we will concatenate the two features along the temporal dimen-
sion and leverage the Transformer encoder to learn the implicit
correlation between them. However, a simple concatenation of
the two streams makes it difficult to distinguish them in the self-
attention mechanism. To mitigate this issue, we apply two in-
dependent convolution-based relative position encoding (rPE)
layers [34, 9] to inject the temporal order information into both
streams. In addition, we further enlarge the difference between
the two sequences by adding a learnable bias vector to each of
them, which is akin to the modality encoding in [32]:

Xin = Convrel_pos(X) +Bmain , (3)

X′
in = Conv′

rel_pos(X
′) +Benroll , (4)

where Bmain ∈ RD and Benroll ∈ RD denote the main utterance

bias vector and the enrollment bias vector, respectively. The
updated features Xin and X′

in are finally concatenated and fed
into the Transformer encoder to predict the frame-wise labels
corresponding to the main utterance. The output labels corre-
sponding to the enrollment frames are discarded via slicing.

2.2. Speaker-aware masked speech prediction

In this subsection, we introduce the training objective of the pro-
posed pre-training method, which follows the design in the Hu-
BERT model [11]. The basic idea of the masked speech predic-
tion objective in HuBERT is to predict the frame-wise discrete
labels of the input speech while masking a portion of the fea-
ture frames generated by the CNN encoder. The prediction loss
(cross-entropy loss) is only calculated for the masked frames,
while the labels are generated by one or more iterations of K-
means clustering on the feature of the input speech. We refer to
the original paper [11] for the details about label generation.

Since our major target is to improve the interference elim-
ination ability of the speech pre-training model via weak su-
pervision, we extend the original objective in HuBERT to fit
this goal. Given a main utterance input y and a target-speaker
enrollment e, we only apply masking to the main utterance fea-
ture X obtained in Eq. (1) and leave the enrollment feature X′

intact. During pre-training, we also calculate the cross entropy
loss only for the main utterance input, whose label is prepared in
advance as in HuBERT training. This is to encourage the model
to focus on target speaker extraction with the full enrollment in-
formation. Furthermore, to take the cocktail party problem into
account, we augment the main utterance y by mixing it with a
randomly sampled utterance from another speaker. The detailed
procedure is described in Section 2.3.

In our implementation, the masks have a fixed length of 10
frames, and the number of masks is proportional to the main
utterance length. The maximum percentage of masked frames
is 80% and is usually not reached due to mask overlaps. The
masked feature frames are simply replaced with zeros.

2.3. Pre-training data preparation

Similar to WavLM [12], we propose a speaker-aware utterance
mixing strategy to simulate the overlapped pre-training data on
the fly. The core algorithm is illustrated in Algorithm 1. The
main differences compared to WavLM are: (1) We sample the
interference speech from the entire database instead of the cur-
rent batch. (2) We set the range of the overlap ratio to [0, 100%]
instead of [0, 50%]. (3) An additional utterance e from the same
main speaker is added to provide the target-speaker information.

2.4. Application: target speech recognition

In this subsection, we introduce several fine-tuning methods
to apply the proposed TS-HuBERT model to the downstream
target speech recognition task. It aims to recognize the target
speaker’s speech in the overlapped speech, which is a typical
task in the cocktail party problem. One straightforward fine-
tuning approach is using a linear projection layer on top of the
pre-training model to map the feature to the output dimension-
ality (vocabulary size) [9, 11]. And the connectionist tempo-
ral classification (CTC) loss [35] is used for end-to-end train-
ing. In this procedure, the entire pre-training model (except for
the CNN encoder) will be updated to fit the downstream task.
Since TS-HuBERT can extract the target-speaker information
from the enrollment, it naturally fits this fine-tuning method.

For SSL models that cannot utilize the enrollment directly,
another adaptation-based fine-tuning approach [36] can be used,
where lightweight speaker adaptation layers are inserted into the
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Algorithm 1 Speaker-aware utterance mixing strategy
Input: an inventory of speaker-aware speech grouped by

speaker IDs: G;
a list of speaker IDs for all speech samples: Q;
a list of pre-training labels for all speech samples: R;
batch size: i;

Output: a batch of pre-training data: U.
1: U = {}
2: Sample i utterances Umain uniformly from G
3: for each main utterance y ∈ Umain do
4: qmain ← Q[y] ▷ Find the speaker ID of y
5: Sample a speaker ID q (̸= qmain) from Q
6: Sample an utterance uinterf from G[q] ▷ Utts of speaker q
7: Sample the mixing energy ratio k ∼ U(−5, 5)
8: Rescale uinterf such that 10 log10

∥umain∥2
∥uinterf∥2 = k

9: M ← length(y); N ← length(uinterf)
10: Sample the mixing length l from {1, 2, · · · ,M}
11: l← min(l, N)
12: Sample the start position m from {0, 1, · · · ,M − l}
13: Sample the start position n from {0, 1, · · · , N − l}
14: y[m : m+ l]← y[m : m+ l] + uinterf[n : n+ l]
15: Sample an enrollment e (̸= y) from G[qmain]
16: r← R[y] ▷ Find the label of y
17: U← U ∪ {(y, e, r)} ▷ Append a new sample
18: end for
19: return U

pre-training model for joint fine-tuning. The newly inserted lay-
ers take as input a pre-extracted speaker embedding vector eemb

to steer the intermediate representations in pre-training mod-
els towards the target speaker. Here, we evaluate the following
three adaptation layers proposed in [36] with TS-HuBERT:
1. Add: eemb is directly added to the CNN encoder output X

through a linear projection to match the hidden dimension.
2. FiLM: eemb is used to estimate a feature-wise linear modu-

lation (FiLM) [37] for the CNN output X:

X⇐ w(eemb) ·X+ b(eemb) , (5)

where w(·) and b(·) are two linear projection layers.
3. cLN: eemb is used to estimate FiLM transformations for the

layer normalizations (LNs) in the first Transformer encoder
layer, converting them into conditional LNs (cLNs) [38]:

XcLN =
[
w(eemb) · γ + b(eemb)

]
· X− µ

σ
+ β , (6)

where γ and β are the learnable scaling and biasing parame-
ters in standard LNs, respectively. µ and σ are the mean and
standard deviation of the input X, respectively.

We apply the near-identity initialization [39] to all adaptation
layers, which is found crucial in our preliminary experiments.

3. Experiments
3.1. Experimental setup
Our experiments were done using the fairseq toolkit2. The TS-
HuBERT model follows the same structure as the WavLM Base
model, which enhances the HuBERT [11] Transformer encoder
by employing the gated relative position bias [27] in the self-
attention mechanism. Due to the space limitation, we refer
to the WavLM paper [12] for the detailed parameters. As de-
scribed in Section 2.1, we additionally insert two convolution-
based rPE layers and two 768-dimensional learnable bias vec-
tors before the Transformer encoder. Each rPE layer consists
of a 16-group convolution layer with kernel size 128 and the

2github.com/facebookresearch/fairseq(313ff05)

Gaussian error linear unit (GELU) activation. These new layers
account for 10M new parameters, resulting in 104.37M parame-
ters in total. The TS-HuBERT model is pre-trained for one iter-
ation (400k steps) on the 960-hour Librispeech data [40] using
labels generated by 500-centroid K-means clustering of the 9-
th Transformer layer output of the HuBERT Base model3. The
batch size is at most 312 seconds of audio per GPU. Other hy-
perparameters are the same as those in HuBERT Base [11]. The
enrollment e is randomly truncated to 48000 samples to avoid
massive memory consumption during pre-training.

As for fine-tuning on downstream tasks, we use the
character-level CTC loss for all experiments. We evaluate the
performance of target speech recognition on two commonly-
used datasets: noisy Libri2Mix [41] and WSJ0-2mix [42]. The
sample rate of all speech data is 16 kHz. In Libri2Mix, there
are 13900, 3000, and 3000 samples in the training4, valida-
tion, and evaluation sets, respectively. In WSJ0-2mix, the num-
bers of samples are 20000, 5000, and 3000, respectively. The
sets of speakers in training and evaluation sets do not overlap.
We adopt the existing enrollment lists for samples in the vali-
dation and evaluation sets of Libri2Mix5 and WSJ0-2mix6, re-
spectively. For the training sets, we randomly select the same-
speaker enrollment for each sample to increase diversity. The
batch size for fine-tuning is 125 seconds of audio per GPU. The
peak learning rate is 2e-5 with 8000 warmup steps. During fine-
tuning, we always freeze the CNN encoder in the pre-training
model. For adaptation-based fine-tuning, we use a ResNet-34
model [43, 44] pre-trained on the VoxCeleb corpus [45] to ex-
tract 256-dimensional speaker embeddings eemb. During evalu-
ation, we adopt the Viterbi algorithm for decoding, and the word
error rate (WER) is calculated as the metric. Unless specifically
mentioned, no language model is used. We used 8 RTX 2080
Ti GPUs for all our experiments.7

3.2. Evaluation on standard speech recognition
Before applying the proposed pre-training model to target
speech recognition, we are firstly interested in the performance
of the proposed model in the standard ASR task. To this end,
we fine-tune the TS-HuBERT model on three different sub-
sets of Librispeech as in [9, 11, 12] and evaluate it on the
test-clean and test-other subsets. We simply follow
the fine-tuning configuration as in [11, 12] and use a batch size
of 200s of audio per GPU. Since no enrollment is available
in the standard ASR task, we discard the enrollment-related
processing and only feed the main utterance feature into the
Transformer encoder (denoted as “w/o e”). We compare three
speech pre-training models in Table 1, where all models are pre-
trained on the 960-hour Librispeech data for 400k steps. In-
terestingly, although our proposed model is pre-trained always
with an additional enrollment input, it can still be fine-tuned
to achieve comparable performance compared to the two SSL
models. This reveals the potential of the proposed TS-HuBERT
model to adapt to different tasks.

3.3. Evaluation on target speech recognition
Next, we evaluate the performance of the speech pre-training
models on the target speech recognition task. We first conduct

3Available at https://dl.fbaipublicfiles.com/
HuBERT/HuBERT_base_ls960.pt

4We only use the train-100 subset to speed up experiments.
5https://github.com/BUTSpeechFIT/speakerbeam
6https://github.com/gemengtju/SpEx_Plus
7Code is available at https://github.com/Emrys365/

fairseq/tree/wavlm/examples/tshubert.

3519



Table 1: WER (%) evaluation of speech pre-training models for
standard speech recognition on the Librispeech test sets. Note
that no language model is used for the listed models.

Method test-clean test-other

1-hour labeled
wav2vec 2.0 Base [12] 24.5 29.7
WavLM Base [12] 24.5 29.2
TS-HuBERT (w/o e) 20.8 28.1

10-hour labeled
wav2vec 2.0 Base [12] 11.1 17.6
WavLM Base [12] 9.8 16.0
TS-HuBERT (w/o e) 10.7 18.9

100-hour labeled
wav2vec 2.0 Base [12] 6.1 13.3
WavLM Base [12] 5.7 12.0
TS-HuBERT (w/o e) 6.0 13.9

experiments on the WSJ0-2mix dataset. The results are shown
in Table 2. We first compare with two state-of-the-art multi-
speaker ASR methods on WSJ0-2mix, i.e., the jointly trained
speech separation and ASR models [46] (denoted as “DPRNN-
ASR”), and a monolithic multi-speaker ASR model [18] (de-
noted as “PIT-ASR”). For the SSL-based method, we com-
pare with the WavLM Base model as it is the state-of-the-
art SSL model with denoising capability and has a similar
pre-training setup to ours. The same adaptation-based fine-
tuning approaches as described in Section 2.4 are applied to the
WavLM Base model to enable target speech recognition.

From Table 2, we can see that directly fine-tuning TS-
HuBERT without adaptation layers can readily achieve very
promising results (WER<7%). The adaptation-based fine-
tuning methods also work well with both WavLM Base and TS-
HuBERT, and increasing the number of fine-tuning steps can
slightly improve the performance. In [11, 12], the Transformer
encoder in the pre-training model is often frozen for the first 10k
fine-tuning steps. Here, we empirically find this trick is harm-
ful to the target speech recognition performance, and it is thus
disabled for the rest experiments. It is noteworthy that our pro-
posed TS-HuBERT model obtains the new state-of-the-art per-
formance (WER=6.1%) on WSJ0-2mix, which is significantly
better than the WavLM Base model.

Furthermore, we evaluate the models on the Libri2Mix
dataset, which is much more difficult due to the presence of
noise.8 Due to the space limitation, we only present the best re-
sults for the adaptation-based fine-tuning methods. In addition,
we compare with the monolithic multi-speaker ASR method
(denoted as “PIT-ASR”) from ESPnet [47], and enhance it by
adding more training data (denoted as “+ train-360”) and
by further applying speed perturbation (SP) [48] and a Trans-
former language model (LM). Although the pre-training-based
models only use the train-100 subset for fine-tuning, they
obtain substantial performance improvement over the PIT-ASR
approach, even when the latter uses much more training data (“+
train-360”). The proposed TS-HuBERT again surpasses the
WavLM Base model, with ~10% relative WER reduction. How-
ever, their performance still lags behind the doubly enhanced
PIT-ASR approach (“++ SP & LM”), implying room for further
improvement in the noisy scenario.

8Differently, [36] uses the clean version of Libri2Mix.

Table 2: Evaluation of different speech pre-training models for
target speech recognition on the WSJ0-2mix test set. “#Param”
denotes the number of trainable parameters. “Frz. 10k” de-
notes whether or not to freeze the pre-training model for the
first 10k steps. “50k” and “100k” denote the fine-tuning steps.

Method Adapt.
Type

#Param Frz.
10k

WER (%)
50k 100k

DPRNN-ASR (8 kHz) [46] - - 7.1
PIT-ASR [18] - - - 12.1

WavLM Base

Add 94.75 M 16.6 14.6
11.7 11.3

FiLM 94.95 M 15.8 13.9
11.7 11.2

cLN 95.34 M 13.0 12.4
10.9 10.4

TS-HuBERT

- 104.39 M 6.9 6.5
6.3 6.1

Add 104.59 M 7.4 6.8
6.2 6.1

FiLM 104.78 M 7.0 6.5
6.3 6.1

cLN 105.18 M 6.8 6.3
6.4 6.1

Table 3: Evaluation of different speech pre-training models
for target speech recognition on the noisy Libri2mix test set.
“#Param” denotes the number of trainable parameters. “100k”
and “250k” denote the fine-tuning steps.

Method Adapt.
Type #Param WER (%)

100k 250k

PIT-ASR - 32 M 50.1
+ train-360 - 32 M 31.0

++ SP & LM - 32 M 23.5

WavLM Base cLN 95.34 M 28.5 27.5

TS-HuBERT - 104.39 M 25.5 24.9
cLN 105.18 M 25.5 24.8

4. Conclusions
In this paper, we propose a novel weakly-supervised speech
pre-training model—TS-HuBERT, which utilizes an additional
enrollment to incorporate the target-speaker information. Pre-
trained with the masked speech prediction objective on over-
lapped speech, TS-HuBERT learns to eliminate the interference
by leveraging the enrollment information. Experiments show
that TS-HuBERT can work well on both standard ASR and tar-
get speech recognition tasks. In future work, we would like
to extend TS-HuBERT with clustering-based speaker labels for
pre-training, thus making it better fit realistic applications.
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