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Abstract
Attention-based models have achieved new state-of-the-art

in many tasks while the computational cost of these models in-
creases drastically compared with previous methods. For most
acoustic tasks, excessively long speech sequences exacerbate
this problem and do not benefit a lot from the attention mech-
anism. We propose the information magnitude (IM) based dy-
namic stride convolution (IM-DSC) method. This method first
calculates the IM according to the importance of each frame,
then dynamically squeezes the redundant frames. We carry on
experiments on speech translation and automatic speech recog-
nition tasks. Our results show that we achieve 0.5 BLEU and 0.4
BLEU improvements on the MuST-C En-De and En-Fr datasets
with a 22% compression ratio. For the ASR task, we gain a
0.2 WER reduction with a 21% compression ratio on the Lib-
rispeech dataset.
Index Terms: attention-based model, speech-to-text, sequence
compression

1. Introduction
The end-to-end model has gained increasing attention due to its
impressive performance [1]. In comparison to hidden markov
models [2] and recurrent neural networks (RNNs) [3], the
attention-based model has a stronger ability to represent and ex-
tract information [4]. As a result, it has achieved state-of-the-art
performance on both automatic speech recognition (ASR) and
speech translation (ST) tasks [5, 6]. However, the attention-
based model relies on nonlinear transfer and attention opera-
tions, which require a large number of parameters and multipli-
cation operations. This leads to a drastic increase in the cost of
training and brings difficulty to its application. In natural lan-
guage processing (NLP) tasks, this problem has been noted, and
numerous efficient models have been proposed [7, 8, 9, 10].

Unlike NLP tasks, acoustic processing tasks require speech
waveforms to be converted to frames[11]. Consequently, the
obtained sequence is significantly longer (e.g., dozens of times)
than the corresponding text [12]. This increase in length causes
a significantly higher cost of matrix computation, and the prob-
lem of computational latency is much serious [13]. Addition-
ally, this also prevents the attention mechanism from effectively
extracting data from noise [14].

To address these challenges, it is essential to reduce the
length of frames, and some sub-sampling strategies have been
proposed. Static sub-sampling methods use convolutional neu-
ral networks (CNNs) to aggregate features of adjacent frames
[15, 16]. But it can not get rid noise and many silent frames are
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still present (see (a) of Figure 1). Dynamic sub-sampling meth-
ods were proposed to overcome these limitations. This method
introduces an RNN module to identify the useful units, and only
necessary frames are passed to the subsequent modules [17, 18].
Although this method achieves an impressive compression ra-
tio, it cannot be parallelized, and errors in the RNN module
can lead to performance degradation [12]. Moreover, the RNN-
based strategy may capture meaningless frames and miss some
essential frames [18] (see (b) of Figure 1).

We propose a parameter-free and efficient method called
IM-DSC (Information Magnitude-based Dynamic Stride Con-
volution) that combines the advantages of the previous two
methods. IM-DSC first generates an information magnitude
(IM) for each frame using strategies such as GMM [19], SVM
[20], etc. The IM metric represents the importance of each
frame, i.e., a higher IM means that this frame contains more
relevant information that should not be missed. Then, the con-
volution network uses the dynamic stride based on the IM to se-
lect whether to preserve useful information or compress noise
(see (c) of Figure 1). The lightweight IM-DSC method sig-
nificantly increases the density of information, namely, using
minimal length to preserve all useful information.

We evaluated our proposed method on the MuST-C dataset
based on the strong baseline and found that IM-DSC achieved
0.4 to 0.5 BLEU improvements with a 22% compression ra-
tio over the baseline model. Additionally, our method outper-
formed the Conformer-based baseline [21] on Librispeech, re-
ducing WER by 0.21.

2. Related Work
Static stride CNN [12, 15] and max-pooling [16] are used to
compress the frames along the time dimension in acoustic pro-
cessing. But if we further compress the frame sequence, the
proportion of redundant information (such as pauses, highly
correlated adjacent frames, etc.) will not decrease, even
worse, the important information will be over-sampled. There-
fore, some researchers have proposed dynamic sub-sampling
schemes [17, 18] based on RNNs. It can dynamically skip
unimportant frames during recurrence and largely increases the
reduction rate of sequence. But the computational latency is
further exacerbated due to the recurrent nature of RNNs which
can not been computed in parallel. If the downstream network
is complex, this additional training strategy will increase the
instability of training. Some researchers proposed progressive
sub-sampling [22] to reduce the complexity of model computa-
tion, but this method requires embedding a sub-sampling mod-
ule inner the conformer layer, which adding more parameters.

1The code is available on https://github.com/GaoChrishao/GDS-
Con.
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(a) Static CNN sub-sampling (b) Dynamic RNN sub-sampling

1 2 1
information magnitude

(c) IM-DSC sub-sampling

Figure 1: Comparison of different sub-sampling strategies, where the green areas represent essential acoustic features and the rest
blue areas represent not-so-important features. The model of (a) does not change its stride when the information density is low. The
model of (b) may lose some essential frames but keep some meaningless frames. The model of (c) alters its stride based on information
magnitude (same adjacent values are merged).

Model En-De En-Fr
BLEU ↑ R(%) ↓ BLEU ↑ R(%) ↓

Fairseq [23] 22.70 25 32.90 25
NeurST [24] 22.80 25 33.30 25
Baseline2×2 22.57 25 33.01 25
Baseline4×2 21.98 13 31.72 13

T-DSC 22.55 22 33.00 22
IM-DSC 23.11 22 33.40 22

Table 1: Results on MuST-C. R is the sub-sampling reduction
rate. T-DSC represents using energy threshold to obtain infor-
mation magnitude and then applying DSC.

3. Proposed Method: IM-DSC
The structure of IM-DSC is depicted in Figure 2. The acous-
tic features are sub-sampled by IM-DSC and then fed into
the attention-based model. IM-DSC comprises the IM scor-
ing module and the dynamic stride convolution layer (DSC).
The IM scoring module assigns importance to each frame, and
the DSC dynamically extracts features based on the calculated
magnitude. We will describe these two modules in more detail
in the following sections.

3.1. IM Scoring Module

The initial step is to obtain the IM, which represents the frame’s
importance. A similar task is Voice Activity Detection [19, 25],
which determines the presence of human speech in audio based
on the frame features’ energy. Inspired by this, we first de-
fine the IM level in reference to the frame energy and then
design the classification method to score it. Although there
are many method to calculate IM, we select Gaussian mixture
model (GMM) to achieve this goal to avoid increasing comput-
ing costs and model parameters.

GMM is a combination of multiple Gaussian distributions
and has been widely used in voice activity detection [19, 26, 27].
The GMM-based model can distinguish between noise and
speech segments due to the higher discrimination between
speech and non-speech regions. Previous work suggests that
frames with valid information belong to a Gaussian distribution
with a large mean and covariance, while non-speech frames be-
long to a distribution with a small mean and covariance [19].
This assumption is because non-speech frames are generally
considered to be more stable than voice signals [28]. There-
fore, the Gaussian distribution with a lower mean can represent

Acoustic Feature
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IM-DSC
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Figure 2: The overall architecture of IM-DSC.

more unimportant information. Given a speech frame vector
x = (x1, x2, ..., xd), d is dimension of speech vector, the prob-
ability density function of the entire mixture distribution can be
expressed by the following formula:

P (x) =
K∑

k=1

πk · N (x|Σk, µk)

=
K∑

k=1

πk

exp(− 1
2
(x− µk)

TΣ−1
k (x− µk))

(2π)d/2|Σk|1/2

(1)

where K is the number of distributions, and πk, µk, and Σk

are the weight, mean vector, and covariance matrix of k-th dis-
tribution. Here, we use K = 2 to classify the IM metric of
each frame. To get the maximum likelihood of P (x), we apply
the expectation-maximization [29] algorithm to find appropriate
πk, µk, and Σk in the first few training steps.

Then, the acoustic frames (x1, x2, ..., xn) are fed to the IM
scoring module to generate the IM sequence m, which could be
described using the following formula:

mi = argmax
k

(p(xi|πk ,Σk , µk )) (2)

Here, the argmax() function chooses the k that maximizes
the probability of the components p() of the above Eq.1. For
example, an IM sequence may look like (1, 2, 2, 1), which in-
dicates that x1, x4) belong to meaningless frames, and the rest
can be classified as essential frames.

3.2. Dynamic Stride Convolution

Previous sub-sampling work usually uses CNNs with a static
stride. For an input with n frames, the extracted length nstatic
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Model dev-clean dev-other test-clean test-other R(%)
WeNet [30] - - 3.09 7.40 25
Baseline2×2 3.04 7.02 3.02 7.41 25
Baseline4×2 2.97 7.62 2.99 7.70 13

T-DSC 3.19 7.23 3.08 7.31 21
IM-DSC 2.88 7.10 2.85 7.17 21

Table 2: WER results on Librspeech (without languange model
scoring).

is computed by the following formula:

nstatic =
n− c

s
+ 1 (3)

where c is the kernel size and s is the stride size. We de-
sign the dynamic stride convolution (DSC) layer which re-
duces the number of non-speech frames based on the calcu-
lated IM sequence m. We define the dynamic stride set S =
{s1, s2, ..., sK} where K is defined by the IM scoring module.
We split the speech sequence (x1, x2, ..., xn) into segments by
a fixed window-size w. w is the max value in S and this can
avoid the possible loss if this slice uses the max stride. Con-
sidering the stationarity of the speech signal, we use the IM∗ to
represent the IM of one segment and it can be decided by the
IM with the most occurrences in this segment. If IM∗ equals
to k∗, we can use the corresponding sk∗ to extract the features
of adjacent frames. If the IM∗ of this segment is low, then the
stride will be larger to aggregate less information from this seg-
ment which is likely to be noise. The output length of the DSC
layer nDSC can be computed by the following formula:

nDSC =
K∑

k=1

lk − c

sk
+ 1 (4)

where lk denotes the total length of frames belonging to the k-
th IM. We can achieve a greater compression ratio by adjusting
each sk larger than s and still preserve the useful information.

4. Experiments
4.1. Preprocessing

We evaluated the proposed IM-DSC on the Librispeech data
[31] for the ASR task and the MuST-C English-German and
English-French datasets for the ST task [32]. We followed
the recipe of Fairseq-S2T [23] for preprocessing all datasets.
We used a 25ms window with a shift of 10ms to extract 80-
dimensional log-mel filterbank data and applied SpecAugment
[33] to augment the speech data. We also used Byte-Pair Encod-
ing [34] subword segmentation with a size of 10,000 to build the
shared vocabulary for every dataset.

4.2. Model Settings

For the ST tasks, we used the Transformer architecture as the
baseline model, which consisted of 12 layers of encoder and 6
layers of decoder. All layers had a hidden size of 256, 4 atten-
tion heads, and 2048 feed-forward size. We used CTC [35] loss
with a weight of 0.3 to assist training. The sub-sampling layer
used two stacked CNNs with a stride of 2 and a conv size of 5
to compress the input acoustic features.

For the ASR task, we used the mainstream architecture
Conformer [21] as the baseline model. It included 12 Con-

Model En-De En-Fr Librispeech
BLEU R(%) BLEU R(%) clean other R(%)

Baseline2×2 22.57 25 33.01 25 3.02 7.41 25
Baselineb 19.85 15 28.13 15 3.78 8.92 16
Baselinea 22.25 19 30.19 19 3.25 7.87 19
IM-DSC-d 23.04 22 32.95 22 2.94 7.23 21

Table 3: Baselineb,a denotes dropping unimportant frames be-
fore or after sub-sampling. IM-DSC-d means we randomly set
10% of gmm export IM to False at training stage.

former layers of encoder and 6 Transformer layers of decoder.
The other hyperparameters were similar to ST task.

In our IM-DSC, we began by sampling 2,000 sentences
from the training set to identify suitable GMM parameters for
each task. We then freezed these GMM parameters during the
subsequent training process. To achieve a compression ratio
greater than 4, we employed two CNNs with a kernel size of 5,
stacked together. The CNN layers’ stride had a dynamic stride
set of S = {2, 4}.

During inference, we averaged the last 10 model parameter
checkpoints and used a beam size of 5 for improved decoding.
We report all experiments using SacreBLEU [36] for ST tasks
and Word Error Rate (WER) for the ASR task.

4.3. Results on ASR and ST

Table 1 displays the results for the MuST-C En-De and En-Fr
tasks. Compared to the baseline with 2×2 times sub-sampling,
the model with 4×2 times sub-sampling experiences signifi-
cant performance degradation. However, if we apply the IM-
DSC method, the model outperforms the baseline model with
0.4 BLEU and 0.5 BLEU points at a higher compression ra-
tio. This indicates that simply compressing the length will lead
to loss of useful information, but with the guidance of IM, our
IM-DSC can accurately drop redundant information. Moreover,
the attention operation can more easily extract useful informa-
tion due to the reduced noise in the sequence. Thus, IM-DSC
outperforms the baseline and is faster.

A similar trend is observed in the ASR task, as shown
in Table 2, which confirms the findings from the ST task.The
robust Conformer only decreases much on the test-other set
when the compression ratio becomes higher. However, our IM-
DSC remains effective with this strong and robust model, which
demonstrates the good generalization of our method.

We use the energy threshold to generate the IM sequence,
which is called T-DSC. Specifically, we define that frames with
acoustic features below the threshold have a low IM. To achieve
the same compression ratio as IM-DSC, we set the threshold to
-0.2. As shown in Table 2 and 1, T-DSC underperforms IM-
DSC, indicating that GMM-based IM is accurate and essential.

5. Analysis
5.1. Effect of IM

We sampled a speech from the training dataset as a case study
and illustrated its IM tagging result based on the GMM in Fig-
ure 3. The frames that align with the word have higher energy,
thus, using the classification strategy to tag the IM is a natural
choice. The tagging result displays that all redundant and im-
portant frames correspond precisely to their respective IM. This
demonstrates that our GMM can accurately classify the speech

4435



Origin spectrum features

IM based on GMM

We’ve got to figure out which brand s

Figure 3: The IM exported from original spectrum features by
GMM. The IM of the dark area is 1 and the rest area is 2.

frames and guide the sub-sampling operation.
We further investigated the behavior of model after directly

removing frames with low IM. Table 3 shows that regardless
of whether we remove non-speech frames before or after static
sub-sampling, performance degrades. We observed that the per-
formance loss of baselinea, which preserves some non-speech
features by sub-sampling CNNs, is significantly smaller than
that of baselineb. This indicates that some frames with low IM
contain necessary pause and boundary information. Integrating
this essential information using our DSC rather than dropping
or skipping it is a more reasonable approach.

To test the robustness of DSC, we replaced 10% of the IM
sequence’s area with the wrong tagging, resulting in IM-DSC-
d. As shown in Table 3, IM-DSC-d can still preserve essential
information, and performance did not suffer significant degen-
eration on all tasks.

Model Avg length R(%) BLEU ∆ BLEU
Baseline2×2 688 25 23.17 -
Baseline4×2 688 13 22.46 0.71 ↓

IM-DSC 668 21 23.54 0.37 ↑
Baseline2×2 422 25 22.39 -
Baseline4×2 422 13 21.21 1.18 ↓

IM-DSC 422 23 22.58 0.19 ↑
Table 4: Comparison of performances on two ST test sets with
different lengths.

5.2. Impact on Attention Mechanism

Figure 4 shows the change in attention weight after using IM-
DSC. The pause between words “a” and “trick” is compressed
by IM-DSC, resulting in a reduction in frame size. Further, due
to the reduction of noise, the attention distribution tends to fo-
cus on useful positions, such as “trick” and “question”. This
explains why IM-DSC can improve both speed and accuracy.

Attention operation is difficult to handle long sequences.
Thus if we sub-sample the speech that has a long length, the
model should exhibit better improvement than the short ones.
We tested this hypothesis on the speech translation task, as
cross-lingual tasks rely heavily on the attention mechanism. We
split the MuST-C En-De dataset into two sets according to the
compression ratio calculated by IM-DSC. Table 4 shows that
the IM-DSC achieves slight improvement in short sequences
and a greater improvement in long sentences, which confirms
our proposal. Noteworthily, the baseline method with 8x com-
pression ratio leads to great performance degradation.

This is a trick

questionThis
is
a

trickquestion

This is a trick

questionThis

is

a
trickquestion

Figure 4: Attention weight exported from Baseline (left) and IM-
DSC (right).

Model Steps Time(s) Speedup Loss PPL
Baseline2×2 900 1314 1.00 9.02 317.31

IM-DSC 900 1223 1.07 9.01 316.05
Baseline2×2 1800 2641 1.00 7.58 107.70

IM-DSC 1800 2464 1.07 7.50 93.81

Table 5: Comparison of training speed and convergence

5.3. Training speed

To test the training speed fairly, we controlled the batch size and
training steps on the Librispeech clean-100 set. The results of
speed and convergence are shown in Table 5. Compared with
the baseline, we found that IM-DSC achieved a stable 7% accel-
eration without loss. This proves improving the down-sampling
rate is an effective way to accelerate. Although the model needs
to compute the IM metric for each frame first, the overall train-
ing speed is not significantly affected. This demonstrates that
the GMM is an efficient method. Regarding the convergence
speed, although this method showed little advantage in the early
stages of training, the IM-DSC’s speed can be much faster than
the baseline’s in later stages due to the noise reduction. This
phenomenon also confirms our motivation.

6. Conclusion
We propose the IM-DSC, a novel sub-sampling method for
acoustic tasks to dynamically compresses speech features. This
method utilizes IM scoring module to obtain information mag-
nitude, which guides the dynamic stride CNN to retain valid
information and compress useless information. Experiments
show that our method achieves superior performance and higher
compression rate. Our analysis shows that the IM scoring mod-
ule can accurately identify redundant information, and the dy-
namic stride CNN is robust when compressing speech features.
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