
Real-Time Personalised Speech Enhancement Transformers with Dynamic
Cross-attended Speaker Representations

Shucong Zhang, Malcolm Chadwick, Alberto Gil C. P. Ramos, Titouan Parcollet, Rogier van Dalen,
Sourav Bhattacharya

Samsung AI Centre, Cambridge, UK
{s1.zhang,malcolm.c,a.gilramos,t.parcollet,r.vandalen,sourav.b1}@samsung.com

Abstract
Personalised speech enhancement (PSE) extracts only the
speech of a target user and removes everything else from cor-
rupted input audio. This can greatly improve on-device stream-
ing audio processing, such as voice calls and speech recogni-
tion, which has strict requirements on model size and latency.
To focus the PSE system on the target speaker, it is conditioned
on a recording of the user’s voice. This recording is usually
summarised as a single static vector. However, a static vector
cannot reflect all the target user’s voice characteristics. Thus,
we propose using the full recording. To condition on such a
variable-length sequence, we propose fully Transformer-based
PSE models with a cross-attention mechanism which generates
target speaker representations dynamically. To better reflect the
on-device scenario, we carefully design and publish a new PSE
dataset. On the dataset, our proposed model significantly sur-
passes strong baselines while halving the model size and reduc-
ing latency.
Index Terms: personalised speech enhancement, speech sepa-
ration, Transformers

1. Introduction
Audio source separation can greatly improve voice calls and
speech recognition. Deep neural networks have lately shown
great performance improvements in audio source separation
tasks [1, 2, 3]. In many cases, such as on a mobile phone, data
from the target user is available to improve performance further.
The process of removing all other audio components from the
corrupted input utterance, both environmental noise and other
voices than the target user, is called personalised speech en-
hancement (PSE). For the mobile phone scenario, response time
and application size are critical factors. Thus, streaming-based
inference, latency, and model size are of paramount importance
when designing on-device PSE systems.

For PSE systems, personalisation relies on a previously
recorded enrolment clip of the target user. Previous works typ-
ically use a separate embedding neural network to summarise
the entire enrolment clip into a static embedding vector, and
this embedding vector is viewed as a voice profile of the user
[4, 5]. A widely-used method of utilising the voice profile is
to concatenate the embedding with the intermediate features of
the PSE network [4, 5, 6, 7, 8, 9]. Even previous works, which
utilise attention mechanisms, execute the attention between the
corrupted input utterance and the single static embedding vec-
tor [10, 11, 12]. However, the single static vector may fail to
capture the variability of the target user’s speech.

To represent the variability in the enrolment audio, we pro-
pose to use a sequence of hidden states instead of a single static
embedding vector. As shown in related fields, such as text-to-

a0

a1

a2

Enrolment
input A

Embedding
network

h0

h1

h2

Enrolment
hidden states H

Mean
pooling h′

Enrolment
embedding

vector

Figure 1: Speaker Embeddings. The enrolment clip A is trans-
formed into a sequence of hidden states H though an embed-
ding network. Then, mean pooling is applied to produce a sin-
gle vector representation h′ of A.

speech (TTS) and voice cloning, a sequence of hidden states
captures the speaker characteristics better than a single vec-
tor [13, 14]. To allow a PSE system to rely on an entire se-
quence of vectors, we propose a fully Transformer-based model
with a novel cross-attention mechanism. For each input frame,
the proposed method dynamically constructs a suitable speaker
representation for the separation task by choosing the most rel-
evant enrolment audio frames. Thus, compared to [10, 11, 12],
this leads to more flexible and relevant speaker representations.

To better match real-world applications than existing
datasets, such as WSJ0-2mix [15] and LibriMix [16], we build
a dataset to reflect the on-device close-talk microphone scenar-
ios, where there are numerous types of environmental ambient
noise and both of the ambient and babble noise can happen any-
where in the audio input. Through extensive experiments, we
compare our proposed models with strong baselines. Thanks
to the flexibility of the proposed cross-attention, our model
achieves 1–2 dB absolute gain in terms of signal-to-distortion
ratio (SDR) and 10–30 % relative word error rate (WER) re-
duction in the downstream automatic speech recognition (ASR)
tasks. Even with only half the model size, our proposed model
still surpasses the baselines consistently and significantly. Fur-
ther, due to the halved model size, our online model gives simi-
lar or smaller latency compared to the baselines. Thus, the key
contributions of our work include: (1) a novel cross-attention
mechanism which utilises the dynamics of both the enrolment
audio and the input audio; (2) a fully Transformer-based on-
line streaming PSE model which outperforms strong baselines
in the three critical aspects (i.e., PSE and downstream ASR per-
formance, model size, and latency) of the real-world on-device
scenarios; (3) a dataset for real-world on-device PSE tasks. 1

2. Background
2.1. Single Speaker Embedding Vector Extraction

PSE systems typically condition on a single embedding vector
for the speaker, which is usually extracted from an enrolment

1Dataset available at:
https://github.com/shucongzhang/CrossAttnPse

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

804 10.21437/Interspeech.2023-1066



utterance A. For instance, a normalised i-vector [17] or a d-
vector [18] is commonly used as the single embedding vector.
Fig. 1 shows the work-flow of using a d-vector network to ex-
tract a single enrolment embedding vector. Once the enrolment
audio has been recorded, the single embedding vector does not
change.

2.2. PSE as Mask Prediction

Given a corrupted input utterance X ′ = (x′
1,x

′
2, ...,x

′
t) and

the enrolment utterance A = (a1,a2, ...,ap) of a target
speaker, where t and p are the sequence length for X ′ and
A respectively, a PSE task is to extract the target speaker’s
speech X = (x1,x2, ...,xt) accurately. Since our focus is on-
device, we do not use convolutional layers to extract features
from the raw wave [1], in order to reduce model size, overall
computations, and latency. Here, we consider PSE as a spectral-
subtraction task [19]. Thus, in the scope of the paper, both X ′

and X are spectrograms. For the corrupted input X ′, the PSE
model generates a mask whose elements are in [0, 1] by condi-
tioning on A. Then, the mask is applied on X ′ and the output
should be as close to X as possible.

3. Related Work
For PSE systems, the main trend to combine a static vector with
the speech enhancement model is to simply concatenate it with
the hidden representations originating from the corrupted input
signal [4, 5, 6, 7, 8, 9, 20, 21, 22, 23, 24, 25]. Fig. 2(a) gives
an example of a previous work [8] that uses concatenation. Al-
though the authors of [8] claim to use cross-attention, as shown
in Fig. 2(a), the input to the attention network is the concatena-
tion of corrupted audio hidden states and a single static vector.
Other approaches consist of integrating factorized [6] or condi-
tioning layers [26, 27] such as FiLM [28] or learnable activation
[29] to the PSE model to blend the static speaker information in
a learnable way. For previous works that use attention mech-
anism to inject the speaker profile [10, 11, 12], the attention
is still between the corrupted input and the single static vec-
tor. Fig. 2(b) illustrates the architecture of a previous work [12]
which applies attention on the single static vector. In our work
however, we propose to use cross-attention to attend the full se-
quence of enrolment utterance hidden states, since a sequence
of hidden states typically better captures the speaker character-
istics than a single static vector [13, 14].

A different but related use case is where a voice profile is
available for not just the target speaker, but also for an interfer-
ing speaker. [30, 31] use an attention layer to attend both the
target and the interference enrolment audio once, but otherwise
use only recurrent neural networks. The scenario where inter-
fering speakers are not only known but have also enrolled could
be relevant for home smart speakers, but it is not considered
plausible for this work, which focuses on mobile phones.

[32] uses attention mechanisms to soft-select a single static
embedding for the current speaker from multiple enrolled users.
This is not suitable for our mobile phone use case, where the
device is typically used by a single user, and the motivation in
[32] is not to produce dynamic speaker representations.

[6] applies an attention mechanism only within the enrol-
ment utterance itself to generate a single static speaker embed-
ding. In this work however, we propose to execute attention
between the enrolment clip and the corrupted input clip to gen-
erate dynamic speaker representations.

N
×

TCN encoder

x′
0 x′

1 x′
2 x′

3

Inputs X′

h′

Enrolment
embedding

vector

Concatenate

Attention
q k v

Attention
q k v

Mask

(a) SpEXpc

N
×

Self-attention
encoder

x′
0 x′

1 x′
2 x′

3

Inputs X′

h′

Enrolment
embedding

vector

Attention

0

q k v

Attention
q k v

Mask

(b) AvaTr

Figure 2: Baselines which use on a single static embedding vec-
tor. We implement SpEXpc following [8] and AvaTr following
[12]. TCN refers to temporal convolutional networt [7, 8] and
attention refers to multi-head attetion layer [33].

N
×

Self-attention
encoder

x′
0 x′

1 x′
2 x′

3

Inputs X′

Attention

h0

h1

h2

Enrolment
hidden

states H

q k v

Attention
q k v

Mask

(a) Cross-Seq

N
×

Self-attention
encoder

x′
0 x′

1 x′
2 x′

3

Inputs X′

Attention

h0

h1

h2

Enrolment
hidden

states H

q k v

Attention
q k v

Mask

(b) Cross-Seq+

Figure 3: Proposed models which utilise cross-attention to at-
tend the full sequence of enrolment hidden states.

4. Method
To better capture the dynamics of both the enrolment utterance
and the corrupted input audio, we propose two variations of
Transformer-based encoder-decoder models. Fig. 3 presents an
architectural overview of our proposed models. Considering the
on-device use case, we further make these models streaming.

4.1. Self-attention Encoder

We use a self-attention encoder to transform a corrupted in-
put utterance X ′ = (x′

1,x
′
2, ...,x

′
t) to a sequence of hid-

den states Z = (z1,z2, ..., zt), where X ′ ∈ Rt×dfft and
Z ∈ Rt×dmodel for the proposed architectures (see Fig. 3).
dfft refers to the number of features after a fast Fourier trans-
form (FFT). Denoting X ′ or the output of the previous encoder
layer as S, then each encoder layer can be described as:

S′ = LN(S +MHA(Q = S,K = S, V = S)) (1)

S′′ = LN(S′ + FFN(S′)). (2)

where MHA, LN, FFN denote multi-headed attention [33],
layer normalisation [34] and the feed-forward network in [33],
respectively. To achieve real-time streaming, we apply a relative
positional encoding (RPE) [35, 36] and a mask for the MHA
component such that at each time step, each encoder layer only
looks back k frames.

805



4.2. Cross-attention Decoder
As discussed in the previous sections, a single static speaker em-
bedding may fail to capture all of the speaker’s characteristics.
Rather, the full sequence of hidden states of the enrolment utter-
ance better reflects the variability of the speaker’s voice features
[13, 14]. Therefore, instead of using a single static embedding
vector, we propose to utilise the full enrolment audio hidden
states. For the scenario where only one enrolment clip of the tar-
get user is available, we apply a pre-trained d-vector model [18]
to A to generate a sequence of hidden states H (e.g., in Fig. 1
H = [h0,h1,h2]). In this case, H reflects the variability of
the speaker’s voice over time.

We further consider the case where q different enrolment
utterances A1:q of the same target user are available. In this
setting, we apply the pre-trained d-vector model to each enrol-
ment utterance to get H1:q . Since processing q full sequences
H1:q could be too time-consuming for the on-device use case,
we propose to use h1:q,p as the hidden state sequence, where p
denotes the last time step of the enrolment clip. h1:q,p presents
the variability of the speaker’s voice over different utterances.

By a slight abuse of notation, we denote both H and h1:q,p

as H . To utilise H , motivated by attention-based neural ma-
chine translation models [33, 37], we propose to apply cross-
attention between the corrupted input frames and the enrolment
hidden states. As shown in Fig. 3, to execute the cross-attention,
we view the hidden representation of the current corrupted in-
put as the Query (q) and H as the Key and Value (k and v).
Therefore, based on the current input frame, the cross-attention
learns to do either a “soft selection” of suitable enrolment hid-
den states along the time axis of the single enrolment audio,
or a “soft selection” of the most suitable enrolment audio from
multiple enrolment utterances. Thus, compared to a static vec-
tor, the speaker representation produced by the proposed cross-
attention is more flexible and accurate.

We denote as Y , both the encoder hidden states Z and the
output of the previous decoder layer. To apply the dot-product
in cross-attention, we map H into H ′ through a linear trans-
formation to match the feature dimension of Y . Then, each
cross-attention layer in the decoder can be described as:

Y ′ = LN(Y +MHA(Q = Y ,K = H ′, V = H ′)) (3)

Y ′′ = LN(Y ′ +MHA(Q = Y ′,K = Y ′, V = Y ′)) (4)

Y ′′′ = LN(Y ′′ + FFN(Y ′′)). (5)

We apply masking and RPE to the MHA component in Equa-
tion (4) to enable streaming. However, for the cross-attention
MHA in Equation (3), since H ′ is pre-computed and available
locally, we do not need to apply masking to support streaming.
We propose two decoder architectures. The first one is “Cross-
Seq” as shown in Fig. 3(a). It only has one cross-attention layer.
Then, it uses self-attention to extract further hidden representa-
tions. The second one is “Cross-Seq+” as shown in Fig. 3(b),
where the decoder is fully cross-attention based.

4.3. Baselines
Among the related works in Section 3, which utilise a sin-
gle static embedding vector through concatenation or attention
mechanisms, [4, 8, 12] make a comprehensive set of different
model architectures which includes recurrent networks [4], con-
volutional networks [8] and MHA networks [8, 12]. Thus, we
choose [4, 8, 12] as baselines for comparisons. [8, 12] are the
most relevant to the proposed work since they use MHA net-
works in the model backbone, and Fig. 2 shows the architectures
of [8, 12].

4.4. Time Complexity
One decoder layer in [8] takes O(t2 · dmodel) time, while one
proposed cross-attention layer takes O(t ·p ·dmodel) time. Typ-
ically, p ≤ t and especially in the multiple utterance case, usu-
ally p ≪ t. Thus, for the decoder part, our method has a lower
time complexity. For the encoder, one encoder convolutional
sub-layer of [8] has a lower time-complexity than one encoder
MHA sub-layer of our proposed model. Nevertheless, in Sec-
tion 5, we will show that with only about half of the parameters,
our proposed models can give superior results than [8]. Due to
reduced model size and number of layers, the actual run-time of
our model is similar to [8]. [12] is a Transformer-based model
and has a same level of complexity compared to our model.
However, as we will show in Section 5, our model can surpass
[12] with only half of the parameters, resulting in lower latency.

5. Experiments
Dataset. Since public datasets such as WSJ0-2mix [15] and
LibriMix [16] do not perfectly match our use case, we build
our dataset to reflect the on-device close-talk microphone sce-
nario: (1) we add periods of silence; (2) we consider overlap-
ping and non-overlapping noise; (3) the noise can start or end
at any point of the input clip; (4) The types of environmen-
tal noise are enormous. For ground-truth clean speech, we use
LibriSpeech [38], which is already split into train, dev and eval
sets. For training, we use all 460 hours available. For each
clean audio, we pair it with either an ambient noise (45%) from
FreeSoundDataset [39] or a babble noise (45%) from a differ-
ent speaker in LibriSpeech. The remaining 10% are left as clean
samples, with a small amount of white noise added. The target
speech and noise are then added to create the corrupted data,
with the noise amplitude adjusted to create varying SNR val-
ues (sampled uniformly between −3 dB and 10 dB inclusive).
Each corrupted audio is then matched with 1 or 5 enrolment ut-
terances, which are random audio clips from the same speaker
in the LibriSpeech dataset. For each utterance, a random 3 sec-
ond chunk (after removing silence) is taken from the longer clip
to act as a short enrolment audio. The corrupted clips are then
segmented into 3 second chunks, to allow for efficient batch-
ing and training. For calculating word error rates (WERs), the
non chunked audio is used instead to avoid transcription issues.
The corrupted audio is then converted to a spectrogram via the
short-time Fourier transform. The spectrograms are made up
of overlapping windows, with a step of 10ms and length 25ms.
Due to the 16kHz sample rate, the number of samples in each
window is 400 and the number of subsequent features is 201.
Experimental Setup. All the models are implemented via Ten-
sorflow 2.6 [40] and Horovod 0.22 [41]. We follow [18] to build
a d-vector model and use it to generate the sequence of enrol-
ment hidden states. To investigate the performance of proposed
models at different scales, we built base models and large mod-
els, where both the encoder and decoder have 3 and 6 layers
respectively. All MHA components have 8 heads and each head
has dimension 32. The FFN has one hidden layer of dimen-
sion 1024. We apply dropout [42] with a probability 0.1 to
the output of each sub-component in each layer. For stream-
ing, we restrict the look back step to 100 frames. We train the
base/larger models for 100/200 epochs with batch size 320/640
on 4/8 NVIDIA V100 GPUs. Each epoch contains 350 hours of
training data. We follow the optimiser and the Noam learning
rate scheduler in [33] with 16k warm-up steps. The training ob-
jective is to reduce the power-law compressed spectral distance
[43] between the cleaned spectrograms produced by the model

806



Table 1: SDR (dB, higher is better) of models with offline and
online scenarios. Cross-Seq+ 5R indicates the cross-attention
is applied among 5 different enrolment clips. For the online
Cross-Seq+ models, we train each model 3 to 9 times and report
the mean SDR along with the standard deviation.

Model Dev SDR Eval SDR #Param Speed
offline

VoiceFilter 16.71 16.09 7.8M N/A
SpEXpc 17.95 17.86 11.7M N/A
AvaTr 18.02 17.42 12.3M N/A
Cross-Seq large 18.23 17.54 10.8M N/A
Cross-Seq+ base 18.70 18.16 6.1M N/A
Cross-Seq+ large 18.96 18.41 12.0M N/A

online
SpEXpc 15.45 15.14 11.7M 1.03x
AvaTr 15.57 15.02 12.3M 0.88x
Cross-Seq large 15.70 15.00 10.8M 0.95x
Cross-Seq+ base 15.71±0.08 15.29±0.06 6.1M 1.00x
Cross-Seq+ large 16.07±0.07 15.62±0.09 12.0M 0.91x
Cross-Seq+ 5R 16.23±0.10 15.84±0.05 12.0M 0.95x

and the ground-truth. For each training process, the final model
is selected based on the SDR on the development set.

Baseline Setup. We implement the baseline models VoiceFilter
[4], SpEXpc [8], and AvaTr [12]. For VoiceFilter and SpEXpc

we use the original model architectures in [4, 8]. Since AvaTr
is a Transformer-based model, for a fair comparison, we im-
plement it using the same hyper-parameters as our proposed
Cross-Seq+. In the online streaming setting, we change the
TCN blocks in SpEXpc to causal and restrict the look back step
to 96 frames (the closest frame count possible to 100 due to the
dilation in [8]) for the convolutional and MHA sub-layer. As
in our proposed cross-attention models, we set the look back
steps to 100 for AvaTr. In [8, 12], the embedding networks of
SpEXpc and AvaTr are different to each other. In this work, for a
fair comparison, we use the d-vector network as the embedding
network for all baselines.

Experimental Results. Although we primarily focus on
streaming scenarios, we also provide non-streaming offline PSE
models whose performance can be viewed as a soft upper
bound. Table 1 shows the SDR results for both of the offline and
online scenarios. For the offline models, our proposed Cross-
Seq outperforms the VoiceFilter and AvaTr baselines, but it does
not surpass SpEXpc on the eval set. Nevertheless, our Cross-
Seq+ models outperform all the baselines by a large margin.

For the online streaming scenario, we do not consider
VoiceFilter or its streaming variant [5] since the performance
gap between VoiceFilter and other offline models are signifi-
cant. Table 1 gives the experimental results of the streaming
models. Our streaming Cross-Seq outperforms baselines on the
development set but this does not generalise to the evaluation
dataset. However, our streaming Cross-Seq+ models outper-
form the baselines consistently. We train each streaming Cross-
Seq+ model 3 to 9 times and this set of extensive experiments
demonstrates that the better performance of Cross-Seq+ models
over baselines is statistically significant. The inferior SDR val-
ues given by the baseline systems with a single static embedding
vector indicate the usefulness of the dynamic speaker represen-
tations, as well as the benefits of attending the full sequence
of enrolment utterance hidden states. Further, Cross-Seq+ 5R,
which attends 5 different enrolment clips, gives the best results
among the streaming models. This indicates the variability of

Table 2: WER (lower is better) of models with online stream-
ing settings. The WER is calculated using an open-source STT
engine [44]. Cross-Seq+ 5R indicates the cross-attention is ap-
plied among 5 different enrolment clips. For Cross-Seq+, we
report the mean WER with one standard deviation of 3 to 9 in-
dependently trained models.

Model (online) Ambient WER Babble WER #Param
Ground Truth 8.34 8.03 N/A
No PSE 18.32 72.32 N/A
SpEXpc 17.18 32.70 11.7M
AvaTr 16.20 25.71 12.3M
Cross-Seq large 16.36 30.09 10.8M
Cross-Seq+ base 15.66±0.15 26.03±0.51 6.1M
Cross-Seq+ large 14.98±0.07 22.24±0.67 12.0M
Cross-Seq+ 5R 15.51±0.08 22.65±0.08 12.0M

the speaker is best captured across different recordings.
In addition to the PSE performance, we also measure model

size and inference speed, which are critical factors for on-device
systems. Impressively, as shown in Table 1, the Cross-Seq+
base model outperforms SpEXpc, AvaTr, and Cross-Seq large,
even with approximately half of the model size. For the stream-
ing models, we record their speed of processing 5000 corrupted
utterances through a single NVIDIA A40 GPU. We view the
speed factor of streaming Cross-Seq+ base as 1.00. Table 1
shows the inference speed of streaming Cross-Seq+ base is
similar to streaming SpEXpc and faster than all other stream-
ing models. It is worth noting that the encoder of SpEXpc

is a convolutional network, which is typically less computa-
tional expensive than a MHA network with a similar amount
of parameters. However, due to the expressiveness of our pro-
posed cross-attention, compared to streaming SpEXpc, stream-
ing Cross-Seq+ base gives higher SDRs with halved model size,
and this results in a similar decoding speed between Cross-Seq+
base and SpEXpc.

We further focus on the downstream ASR task. Table 2
shows the WERs. First, we apply the ASR system on the clean
utterances to have a performance upper bound. To have a lower
bound, we apply the ASR engine to the corrupted clips without
any PSE module. Then, we apply an inverse fast Fourier trans-
form (IFFT) to the output of the PSE models and feed the output
of the IFFT to the ASR engine. In terms of WERs, the SpEXpc

baseline gives the highest WERs among all models, although
its PSE performance measured by SDR is not the worst. With
halved model size, our proposed Cross-Seq+ base has signifi-
cantly lower ambient WERs compared to all the baselines and
similar babble WERs compared to AvarTr. When the model
sizes are similar, the Cross-Seq+ large models outperform all
models by a large margin.

6. Conclusion
We proposed fully Transformer-based streaming PSE models,
which utilise on a novel cross-attention approach to generate
dynamic target speaker representations. Compared to existing
PSE systems, which uses a single static speaker embedding vec-
tor, our proposed approach better captures the variability of the
speech of the target speaker. The improved expressiveness of
the model leads to better performance in both PSE and down-
stream ASR tasks as well as reduced model size and latency
when compared to baselines. Our proposed cross-attention can
also be integrated into PSE models with backbone architectures
other than Transformers, which we left as a future work.

807



7. References
[1] Y. Luo and N. Mesgarani, “Conv-tasnet: Surpassing ideal time–

frequency magnitude masking for speech separation,” TASLP,
2019.

[2] J. Chen, Q. Mao, and D. Liu, “Dual-path transformer network:
Direct context-aware modeling for end-to-end monaural speech
separation,” in INTERSPEECH, 2020.

[3] C. Subakan, M. Ravanelli, S. Cornell, M. Bronzi, and J. Zhong,
“Attention is all you need in speech separation,” in ICASSP, 2021.

[4] Q. Wang, H. Muckenhirn, K. Wilson, P. Sridhar, Z. Wu, J. Her-
shey, R. A. Saurous, R. J. Weiss, Y. Jia, and I. L. Moreno, “Voice-
filter: Targeted voice separation by speaker-conditioned spectro-
gram masking,” in INTERSPEECH, 2019.

[5] Q. Wang, I. L. Moreno, M. Saglam, K. Wilson, A. Chiao, R. Liu,
Y. He, W. Li, J. Pelecanos, M. Nika et al., “Voicefilter-lite:
Streaming targeted voice separation for on-device speech recog-
nition,” in INTERSPEECH, 2020.

[6] K. Žmolı́ková, M. Delcroix, K. Kinoshita, T. Ochiai, T. Nakatani,
L. Burget, and J. Černockỳ, “Speakerbeam: Speaker aware neural
network for target speaker extraction in speech mixtures,” JSTSP,
2019.

[7] M. Ge, C. Xu, L. Wang, E. S. Chng, J. Dang, and H. Li, “Spex+:
A complete time domain speaker extraction network,” in INTER-
SPEECH, 2020.

[8] W. Wang, C. Xu, M. Ge, and H. Li, “Neural speaker extraction
with speaker-speech cross-attention network.” in INTERSPEECH,
2021.

[9] P. Shen, S. He, and X. Zhang, “Exarn: self-attending rnn for target
speaker extraction,” arXiv preprint arXiv:2212.01106, 2022.

[10] T. Ochiai, M. Delcroix, K. Kinoshita, A. Ogawa, and T. Nakatani,
“A unified framework for neural speech separation and extrac-
tion,” in ICASSP, 2019.

[11] J. Han, W. Rao, Y. Long, and J. Liang, “Attention-based scaling
adaptation for target speech extraction,” in ASRU, 2021.

[12] S. X. Hu, M. R. Arefin, V.-N. Nguyen, A. Dipani, X. Pitkow, and
A. S. Tolias, “Avatr: One-shot speaker extraction with transform-
ers,” in INTERSPEECH, 2021.

[13] H. Zhan, H. Zhang, W. Ou, and Y. Lin, “Improve cross-lingual
text-to-speech synthesis on monolingual corpora with pitch con-
tour information.” in INTERSPEECH, 2021.

[14] F. Lux, J. Koch, and N. T. Vu, “Exact prosody cloning in zero-shot
multispeaker text-to-speech,” in IEEE SLT, 2023.

[15] J. R. Hershey, Z. Chen, J. Le Roux, and S. Watanabe, “Deep clus-
tering: Discriminative embeddings for segmentation and separa-
tion,” in ICASSP, 2016.

[16] J. Cosentino, M. Pariente, S. Cornell, A. Deleforge, and E. Vin-
cent, “Librimix: An open-source dataset for generalizable speech
separation,” 2020.

[17] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” TASLP, 2010.

[18] L. Wan, Q. Wang, A. Papir, and I. L. Moreno, “Generalized end-
to-end loss for speaker verification,” in ICASSP, 2018.

[19] S. V. Vaseghi, Advanced Digital Signal Processing and Noise Re-
duction. New York: John Wiley & Sons, 2008.

[20] C. Xu, W. Rao, E. S. Chng, and H. Li, “Time-domain speaker
extraction network,” in ASRU, 2019.

[21] T. Li, Q. Lin, Y. Bao, and M. Li, “Atss-net: Target speaker sep-
aration via attention-based neural network,” in INTERSPEECH,
2020.

[22] X. Ji, M. Yu, C. Zhang, D. Su, T. Yu, X. Liu, and D. Yu,
“Speaker-aware target speaker enhancement by jointly learning
with speaker embedding extraction,” in ICASSP, 2020.

[23] S. E. Eskimez, T. Yoshioka, H. Wang, X. Wang, Z. Chen, and
X. Huang, “Personalized speech enhancement: New models and
comprehensive evaluation,” in ICASSP, 2022.

[24] R. Giri, S. Venkataramani, J.-M. Valin, U. Isik, and A. Krish-
naswamy, “Personalized percepnet: Real-time, low-complexity
target voice separation and enhancement,” in INTERSPEECH,
2021.

[25] M. Thakker, S. E. Eskimez, T. Yoshioka, and H. Wang, “Fast real-
time personalized speech enhancement: End-to-end enhancement
network (e3net) and knowledge distillation,” in INTERSPEECH,
2022.

[26] T. O’Malley, A. Narayanan, Q. Wang, A. Park, J. Walker, and
N. Howard, “A conformer-based asr frontend for joint acoustic
echo cancellation, speech enhancement and speech separation,”
in ASRU, 2021.

[27] B. Gfeller, D. Roblek, and M. Tagliasacchi, “One-shot conditional
audio filtering of arbitrary sounds,” in ICASSP, 2021.

[28] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville,
“Film: Visual reasoning with a general conditioning layer,” in
AAAI, 2018.

[29] A. G. C. P. Ramos, A. Mehrotra, N. D. Lane, and S. Bhattacharya,
“Conditioning sequence-to-sequence networks with learned acti-
vations,” in ICLR, 2022.

[30] X. Xiao, Z. Chen, T. Yoshioka, H. Erdogan, C. Liu, D. Dimitri-
adis, J. Droppo, and Y. Gong, “Single-channel speech extraction
using speaker inventory and attention network,” in ICASSP, 2019.

[31] P. Wang, Z. Chen, X. Xiao, Z. Meng, T. Yoshioka, T. Zhou, L. Lu,
and J. Li, “Speech separation using speaker inventory,” in ASRU,
2019.

[32] R. Rikhye, Q. Wang, Q. Liang, Y. He, and I. McGraw, “Closing
the gap between single-user and multi-user voicefilter-lite,” arXiv
preprint arXiv:2202.12169, 2022.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in NeurIPS, 2017.

[34] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
arXiv preprint arXiv:1607.06450, 2016.

[35] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with rela-
tive position representations,” CoRR, 2018.

[36] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhut-
dinov, “Transformer-xl: Attentive language models beyond a
fixed-length context,” in ACL, 2019.

[37] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in ICLR, 2015.

[38] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in ICASSP, 2015.

[39] E. Fonseca, M. Plakal, F. Font, D. P. W. Ellis, X. Favory, J. Pons,
and X. Serra, “General-purpose tagging of freesound audio
with audioset labels: Task description, dataset, and baseline. in
proceedings of dcase 2018 workshop,” 2018. [Online]. Available:
https://arxiv.org/abs/1807.09902

[40] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow:
Large-scale machine learning on heterogeneous distributed sys-
tems,” arXiv preprint arXiv:1603.04467, 2016.

[41] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed
deep learning in tensorflow,” arXiv preprint arXiv:1802.05799,
2018.

[42] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural net-
works from overfitting,” JMLR, 2014.

[43] S. Braun and I. Tashev, “A consolidated view of loss functions for
supervised deep learning-based speech enhancement,” in ICTSP,
2021.

[44] S. Team, “Silero models: pre-trained enterprise-grade stt
/ tts models and benchmarks,” https://github.com/snakers4/
silero-models, 2021.

808


