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Abstract

Deep learning has been recently introduced for efficient acous-
tic howling suppression (AHS). However, the recurrent nature
of howling creates a mismatch between offline training and
streaming inference, limiting the quality of enhanced speech.
To address this limitation, we propose a hybrid method that
combines a Kalman filter with a self-attentive recurrent neural
network (SARNN) to leverage their respective advantages for
robust AHS. During offline training, a pre-processed signal ob-
tained from the Kalman filter and an ideal microphone signal
generated via teacher-forced training strategy are used to train
the deep neural network (DNN). During streaming inference,
the DNN’s parameters are fixed while its output serves as a ref-
erence signal for updating the Kalman filter. Evaluation in both
offline and streaming inference scenarios using simulated and
real-recorded data shows that the proposed method efficiently
suppresses howling and consistently outperforms baselines.
Index Terms: acoustic howling suppression, Kalman filter,
teacher forcing, Deep AHS, hybrid method

1. Introduction

Acoustic howling is a phenomenon that arises in sound rein-
forcement systems where the sound emitted from speakers is
picked up by a microphone and re-amplified recursively in a
feedback loop, resulting in an unpleasant high-pitched sound
[1, 2]. This can occur in different settings such as concerts, pre-
sentations, public address systems, and hearing aids. Acoustic
howling suppression (AHS) refers to the process of reducing or
eliminating the occurrence of acoustic howling. Several meth-
ods have been proposed, including passive methods like physi-
cal isolation of microphones and speakers, and active methods
such as gain reduction [3, 4], notch filters [5, 6, 7], and adaptive
filtering [8]. Among these methods, adaptive filtering, such as
the Kalman filter [9, 10], dynamically adjusts the signal in real-
time to prevent the feedback loop and leads to relatively better
speech quality. However, the Kalman filter can be sensitive to
control parameters and interferences and fails to address non-
linear distortions introduced by amplifiers and loudspeakers.
Recently, deep learning has been utilized to tackle AHS-
related tasks due to its ability to model complex nonlinear re-
lationships. Chen et al. [11] introduced a deep learning based
method for howling detection. A deep learning based howl-
ing noise cancellation method was introduced in [12]. Zheng
et al. [13] employed deep learning to address the marginal sta-
bility problems of acoustic feedback systems, and this method
was named as DeepMFC. More recently, a purely deep learning
based method (Deep AHS) was proposed for acoustic howling
suppression [14]. However, deep learning based methods are
prone to a mismatch between offline training and streaming in-

ference, leading to reduced speech quality performance.

Despite significant progress in the development of AHS
methods, current methods still face many challenges, especially
the trade-off between suppression performance and signal dis-
tortion. Inspired by the success of combining traditional adap-
tive methods with deep learning to solve acoustic echo cancel-
lation problems [15, 16, 17, 18], we present a hybrid method for
AHS in this paper.

The proposed method, called Hybrid AHS, combines two
approaches to address acoustic howling: a traditional method
called frequency domain Kalman filter (FDKF) and a deep
neural network (DNN) module based on self-attentive recur-
rent neural network (SARNN) [19]. Specifically, the FDKF
and SARNN are combined in a cascade manner with the pre-
processed output from FDKF serving as an additional input for
training the SARNN module. The pre-trained SARNN is then
used during streaming inference, and its output is used as a ref-
erence signal for updating the FDKF parameters. During offline
training, the Hybrid AHS model is trained in a teacher-forced
manner [20, 21] that assumes only the target speech in the mi-
crophone signal is sent to the loudspeaker. This helps convert
a recursive howling suppression process to a speech separation
problem and shows effective performance for howling suppres-
sion during streaming inference. The proposed method lever-
ages the advantages of both traditional adaptive filtering and
deep learning based methods. The benefits of Hybrid AHS are
twofold: 1) using the signal pre-processed by traditional method
provides more information for model training and helps reduce
the mismatch between offline training and streaming inference,
and 2) integrating deep learning to further enhance the output
of traditional methods resolves the leakages produced due to
nonlinear distortion, resulting in a robust solution.

The remainder of this paper is organized as follows. Section
2 introduces acoustic howling problem. The proposed Hybrid
AHS method is introduced in Section 3. Section 4 and Section 5
describes the experimental setup and results, respectively. Sec-
tion 6 concludes the paper.

2. Acoustic howling suppression
2.1. Acoustic howling

A typical single-channel acoustic amplification system is shown
in Figure 1(a). It consists of a microphone and a loudspeaker
where the target speech is picked up by the microphone as s(t),
which is then sent to the loudspeaker for acoustic amplification.
The loudspeaker signal x(¢) is played out and arrives at the mi-
crophone as an acoustic feedback denoted as d(t):

d(t) = NL[a()] * h(t) ()
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Figure 1: Diagram of (a) an acoustic amplification system, and
(b) the proposed Hybrid AHS method.

where N L(-) denotes the nonlinear distortion introduced by the
loudspeaker, h(t) represents the acoustic path from loudspeaker
to microphone, and * denotes linear convolution.

If without any processing, the playback signal d(t) will re-
enter the pickup repeatedly, the corresponding microphone sig-
nal can then be represented as:

y(t) =s(t) +n(t) + NLy(t — At) -G« h(t) (2)
where n(t) represents the background noise, At denotes the
system delay from microphone to loudspeaker, G is the gain
of amplifier. The recursive relationship between y(¢) and
y(t — At) causes re-amplifying of playback signal and leads to
a feedback loop that results in an annoying, high-pitched sound,
which is known as acoustic howling.

It is worth acknowledging that acoustic howling and acous-
tic echo are two distinct phenomena, although inappropriate
handling of acoustic echo can result in howling. The primary
differences between these two phenomena are: 1. While both
of them are fundamentally playback signals, howling is char-
acterized by a gradual buildup of signal energy in a recursive
manner. 2. The signal that leads to howling is generated by
the same source as the target signal, making the suppression of
howling more challenging.

2.2. Existing AHS methods

In general, the goal of an AHS is to reduce or eliminate the
howling, while preserving the desired signal as much as possi-
ble. However, this goal is not always easy to achieve, because
the suppression of the howling can often result in some level
of signal distortion. Kalman filter based methods have a long
history of success in a variety of signal processing applications,
and they can be effective in suppressing acoustic howling in
certain environments [10]. However, they are limited by their
reliance on a statistical model of the system, which can be dif-
ficult to estimate accurately in scenarios with nonlinearities and
leads to noticeable leakage and/or signal distortion. Deep learn-
ing based methods, on the other hand, can learn complex rela-
tionships and be effective in suppressing acoustic howling in
environments where the howling can not be well modeled by a
Kalman filter [14]. While the mismatch between offline training
and streaming inference leads to unavoidable signal distortions.

The challenge is to find a balance between suppression per-
formance and signal distortion that is acceptable for a particu-
lar application. Therefore, we consider combine traditional and
deep learning based methods to achieve improved performance,
improved robustness, and the ability to leverage the strengths of
both methods to achieve a more effective solution.
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3. Proposed method: Hybrid AHS

To address the disadvantages of the above mentioned AHS
methods and leverage their advantages, a hybrid solution, called
Hybrid AHS, is proposed in this paper. Figure 1 (b) illustrates
a schematic of the proposed method, which comprises of two
modules: Kalman and DNN.

3.1. Problem formulation

Suppressing howling is best achieved by incorporating the AHS
method within the acoustic loop considering the recursive na-
ture of howling. However, this can be computationally demand-
ing and inefficient for deep learning based methods. To address
this challenge, we follow the approach of Deep AHS [14] and
adopt the teacher-forcing training strategy to formulate AHS
as a speech separation problem during model training. This
proposed approach is based on the assumption that the Hybrid
AHS model, once properly trained, can attenuate interferences
and transmit only the target speech to the loudspeaker. Conse-
quently, the actual output §(¢) in Figure 1(b) can be replaced
with the ideal target (teacher signal) s(¢) during model training,
and the recursively defined microphone signal in Eq. (2) is con-
verted into a mixture of target signal, background noise, and an
one-time playback signal determined by s(¢):

y(t) = s(t) +n(t) + h(t) * NL[s(t — At) - G]  (3)
The overall task of AHS is then transformed into a speech sep-
aration problem during offline training. The object is to extract
the target signal s(t) from the ideal microphone signal, defined
in Eq. (3) and exclusively employed for model training, using
the Kalman filter output e(¢) as an additional input, thus jointly
suppressing howling and noise.

3.2. Kalman filter

The Kalman module utilizes microphone signal y(¢) and the en-
hanced signal §(t) as a reference (denoted as r(t)) to obtain an
estimate of the acoustic path ﬁ(t) and the corresponding feed-
back d(t). The estimated feedback is then subtracted from the
microphone signal, and the resulting error signal e(¢) is em-
ployed for weight updating. The overall process can be viewed
as a two-step procedure (prediction and updating) with Kalman
filter weights updated through the iterative feedback from the
two steps.
In the prediction step, the near-end signal is estimated as

“

where E, Y, and R are the short-time Fourier transform (STFT)

of e(t), y(t), and r(t) respectively, and k denotes the frame in-

dex. ﬂ(k‘) denotes the frequency-domain estimated echo path.
The echo path H(k) is updated in the updating step:

H(k +1) = A[H(k) + K(k)E(k)], Q)
where A is the transition factor. K (k) denotes the Kalman gain,
which is obtained using covariances calculated from state esti-
mation error, observation and process noises [9].

3.3. Inputs and feature extraction

The DNN module, illustrated in Figure 2, accepts a pre-
processed signal using the Kalman fitler e and an ideal micro-
phone signal generated via teacher forcing learning y as inputs
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Figure 2: Architecture of the DNN module for AHS. Each “Conv-1D” block outputs a complex-valued ratio filter, which is then applied

upon a specific signal through deep filtering, denoted as ©.

for model training. The input signals, which are sampled at 16
kHz, are split into frames of 32 ms and a frame shift of 16 ms.
A 512-point STFT is then performed on each frame, resulting
in the frequency domain inputs, Y and E. Besides the normal-
ized log-power spectra (LPS), we extract the correlation matrix
across time frames and frequency bins of the input signals to
capture the signals’ temporal and frequency dependency. These
features help in differentiating between howling and tonal com-
ponents. Channel covariance of input signals (Y and E) is cal-
culated as another input feature to account for cross-correlation
between them. A concatenation of these features is used for
model training with a linear layer for feature fusion. More de-
tails regarding feature design can be found in [19]

3.4. Network structure

The DNN module is implemented using a self-attentive recur-
rent neural network (SARNN). The neural network is composed
of three main parts. The first part comprises a gated recurrent
unit (GRU) layer with 257 hidden units and two 1D convolu-
tion layers. These layers estimate two complex-valued filters
which are applied on the input signals using deep filtering [22]
to obtain intermediate outputs, denoted as Y and E. The moti-
vation behind obtaining these intermediate outputs is that they
can be used as learnt nonlinear reference signals [16, 17] and
provide more information for howling suppression. Later, the
LPS of these intermediate signals are concatenated with the
fused feature and then used as inputs for another GRU layer.
We regard Y, Y, and E as three-channel inputs and employ
two 1D convolution layers for each input channel to estimate
the playback/noise and target speech components in it. The
corresponding covariance matrices of playback/noise d v and
target speech dgs are calculated and concatenated as the in-
put to the third part, SARNN. The SARNN part employs two
linear layers, two multi-head self-attention (MHSA), a GRU,
and residual connections to estimate a three-channel enhance-
ment filter. The enhanced signal S is then obtained through
multi-channel deep filtering. Finally, an inverse STFT (iSTFT)
is used to get waveform §. Details of the network structure can
be found in [19].

3.5. Loss functions

We utilize a combination of scale-invariance signal-to-
distortion ratio (SI-SDR) [23] in the time domain and mean
absolute error (MAE) of spectrum magnitude in the frequency

domain for model training:
Loss = —SI-SDR(3, s) + AMAE(|S/, |S]) (6)

A is set to 10000 to balance the value range of these two losses.
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4. Experimental setup
4.1. Data preparation

The AISHELL-2 dataset [24] is used for carrying out experi-
ments in situations with playback, background noise, and non-
linear distortions. During data simulation, we generate 10,000
room impulse response (RIR) sets using the image method
[25] with random room characteristics and reverberation times
(RT60) range of 0 to 0.6 seconds. Each RIR set consisting
of RIRs for the near-end speaker, loudspeaker and background
noise locations. A randomly selected RIR set is utilized to gen-
erate target speech s(t) and its corresponding one-time play-
back signal d(t) using system delay At randomly generated
within the range of [0.1,0.3] seconds, and amplification gain
randomly selected within the range of [1, 3.2]. The nonlinear
distortions introduced by the amplifier and loudspeaker are sim-
ulated as a saturation type of nonlinearity using hard clipping
and Sigmoidal function [26, 27]. The microphone signal for
offline training is created as a mixture with signal-to-playback-
ratio (SPR) randomly selected from [—10, 10] dB and signal-to-
noise ratio (SNR) ranging from —10 dB to 30 dB. Kalman filter
is employed in an initial stage to preprocess the training signals
and obtain the corresponding outputs. A total number of 10k,
0.3k, and 0.5k signals are generated for training, validation and
testing, respectively. The testing data are generated using dif-
ferent utterances and RIRs from that of training and validation
data. The model is trained for 60 epochs with a batch size of
32.

4.2. Evaluation metrics

The performance of the proposed method is evaluated in two
different manners: offline evaluation and streaming inference
[14]. The offline evaluation uses signals generated in Eq. (3) as
input to evaluate playback attenuation performance. SI-SDR
and perceptual evaluation of speech quality (PESQ) [28] are
used to evaluate the extent of playback attenuation and qual-
ity of target speech. And a higher value denotes better perfor-
mance.

In streaming inference, we insert the deep learning mod-
ule into the acoustic loop and generate the enhanced signal
recursively. This manner of evaluation considers the poten-
tial re-entry of leakage/distortion in the close acoustic loop and
evaluates the proposed method’s real-time howling suppression
performance [14]. The spectrograms of recursively processed
signal are presented to show the effectiveness of the proposed
method.
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Figure 3: Spectrograms of streaming results for scenarios with (a) light, (b) moderate, and (c) severe howling. The signals with no
AHS, target, Kalman, Deep AHS, Deep MFC, and the proposed Hybrid AHS are shown in each panel.

Table 1: Offline evaluation of models for playback attenuation.

SI-SDR (dB) PESQ
G 1 2 3 1 2 3
Unprocessed 8.59 2.82 -0.66 | 2.83 241 218
Kalman 7.66 -1.42 -10.56 | 2.88 244 207
Deep AHS [14] | 1632 1332 1146 | 3.60 3.41 3.27
Deep MFC [13] | 14.82  8.60 2.61 346 313 281
Hybrid AHS 20.16 17.11 1443 | 3.76 3.60 3.43

5. Experimental results
5.1. Offline evaluation

We first evaluate the performance of our proposed method for
playback attenuation and compare it with two recently proposed
deep learning based AHS methods [13, 14] and a Kalman filter
based approach [10]. The comparison results are presented in
Table 1, with G representing the amplification gain. Note that
the Kalman results shown here could be even worse than the
”Unprocessed” signals since the former is obtained in a stream-
ing manner, whereas the latter is an ideal microphone mixture
generated using the teacher-forced training strategy described
in Eq. (3). To ensure a fair comparison, we trained the Deep
AHS, Deep MFC, and Hybrid AHS using the same network and
training data. The comparison results indicate that the Hybrid
AHS approach outperforms all baseline methods consistently.
We have also experimented with using a delayed microphone
signal as another reference signal, as suggested in [14]. How-
ever, our findings indicate that incorporating a delayed micro-
phone does not lead to performance improvement for Hybrid
AHS, since the output of Kalman provides sufficient reference
information and outperforms the benefits of having a delayed
microphone as additional input.

5.2. Streaming inference

This section assesses the effectiveness of the proposed method
using streaming inference. Three testing scenarios, comprising
soft, moderate, and severe howling, are generated by gradually
increasing the amplification gain G during streaming inference.
The spectrograms of processed signals are shown in Figure 3.
It can be observed that all deep learning based AHS approaches
successfully prevent the occurrence of howling, with the Hybrid
AHS method delivering the best overall performance.
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Figure 4: Spectrograms of two test results using real recordings
and a small model when (a) turn off both Kalman and DNN
modules, (b) turn on only Kalman module, and (c) turn on both
Kalman and DNN modules (proposed Hybrid AHS).

5.3. Performance using real-recorded signals and a deploy-
able model

We further evaluate the performance of the proposed method
for howling suppression with real-recorded signals and a de-
ployable model. For this purpose, we set up a simple acoustic
amplification system and trained the Hybrid AHS method us-
ing real recordings and a small, deployable model. The model
is a long short-term memory (LSTM) network that consists of
a single hidden layer with 100 units, resulting in 0.13 M train-
able parameters. To make the model feasible for deployment
on real devices, we reduced the frame size and frame shift to 8
ms and 4 ms, respectively, and used only LPS features as inputs
for model training. The processed results are presented in Fig-
ure 4, demonstrating the effectiveness of the proposed method
in howling suppression and its ability to further enhance the
output of the Kalman filter.

6. Conclusion

In this study, we have introduced a Hybrid AHS approach that
integrates traditional Kalman filtering with deep learning to sup-
press acoustic howling. The proposed method involves offline
training of a SARNN using signals that have been pre-processed
by Kalman filtering, as well as a microphone signal generated
using teacher forcing training strategy. During streaming infer-
ence, the pre-trained model is inserted into the closed acous-
tic loop to recursively process the input signals. By leveraging
both Kalman filtering and deep learning, the proposed method
achieves enhanced suppression performance and speech quality
for nonlinear AHS in comparison to baseline techniques in both
offline and streaming scenarios. Future work includes exploring
practical issues such as on-device implementation and extend-
ing the proposed method for handling multi-channel scenarios.
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