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Abstract

Neural text-to-speech systems are often optimized on L1/L2
losses, which make strong assumptions about the distributions
of the target data space. Aiming to improve those assumptions,
Normalizing Flows and Diffusion Probabilistic Models were re-
cently proposed as alternatives. In this paper, we compare tra-
ditional L1/L2-based approaches to diffusion and flow-based
approaches for the tasks of prosody and mel-spectrogram pre-
diction for text-to-speech synthesis. We use a prosody model to
generate log-f0 and duration features, which are used to condi-
tion an acoustic model that generates mel-spectrograms. Exper-
imental results demonstrate that the flow-based model achieves
the best performance for spectrogram prediction, improving
over equivalent diffusion and L1 models. Meanwhile, both dif-
fusion and flow-based prosody predictors result in significant
improvements over a typical L2-trained prosody models.
Index Terms: text-to-speech, prosody modelling, acoustic
model, normalizing flows, diffusion

1. Introduction
Neural text-to-speech (TTS) has recently demonstrated sig-

nificant success in generating high-quality and stable speech
[1–5]. However, TTS systems are still affected by the one-
to-many mapping problem caused by speech containing many
possible variations not directly explained by the phoneme se-
quence, such as prosody [2] or emotion [6]. The typical ap-
proach of training with L1 or L2 losses pushes the model to pro-
duce ‘average’ (over-smoothed) mel-spectrograms, resulting in
synthesised speech with flat prosody and low quality [7]. Two
strategies can be applied to handle this problem. On the one
hand, we may provide auxiliary inputs to the acoustic model,
such as explicit prosodic features [4, 5]. This has the additional
advantage of allowing disentangled prosody control, or trans-
fer [8]. Alternatively, we may move from a point-based estima-
tion approach (e.g. models using L1 or L2 losses) to a prob-
ability density estimation approach (models using Normalizing
Flows [9, 10] or Diffusion Models [11, 12]). We compare both
strategies and analyze their impact on text-to-speech synthesis.

In terms of the first strategy, we may use two acoustic cor-
relates of prosody, duration and f0, to explain speech variation.
This helps the model to disambiguate the one-to-many prob-
lem of TTS synthesis. Oracle prosodic features extracted from
the target speech can be provided to the model during train-
ing. However, for inference a prosody predictor is required to
provide the prosodic features to the acoustic model. In pre-
vious work [4, 5, 13], the L2 loss function is applied to opti-
mize the prosody predictors. However, this loss results in the
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predictor generating average prosody, which lacks expressivity.
In [14], a Mixture Density Network (MDN), is used to over-
come the prosody prediction over-smoothing problem. How-
ever, the authors investigate only f0, and, for acoustic mod-
elling, rely on an older Statistical Parametric Speech Synthesis
(SPSS) system, rather than a more recent neural TTS approach.
More recently, [15] found encouraging results when applying
normalizing flows to the task of duration modelling. However,
this prediction was independent of f0. In this paper, state-of-art
generative models, normalizing flow and diffusion, are investi-
gated for the task of joint f0 and duration modelling.

It is the goal of this paper to compare a traditional L1/L2-
loss approach to probability density estimation approaches us-
ing Normalizing Flows and Diffusion Models. We investigate
these architectures for the tasks of prosody modelling (genera-
tion of f0 and duration) and acoustic modelling (generation of
mel-spectrograms). Our key contributions are: 1) the use nor-
malizing flows and diffusion models to address the problem of
over-smoothing for joint f0 and duration prediction; and 2) a
direct comparison of typical L1/L2-loss based approaches to
normalising flows and diffusion models for the tasks of acous-
tic and prosody modelling.

2. Models
We investigate normalizing flows and diffusion models for

the tasks of prosody and acoustic modelling. These are com-
pared against standard L1/L2-based approaches from literature.

L1/L2 loss is commonly applied in literature during model
training. Figure 1(a) illustrates how conditional information
c is converted to the predicted target feature x̃ by a non-
autoregressive decoder. The structure of the decoder is de-
scribed in [3]. The model is optimized by minimizing the L1
(for spectrogram prediction) or L2 (for prosody prediction) loss
between x̃ and the target feature x. From a probabilistic per-
spective, minimizing L1 and L2 loss is equivalent to maxi-
mizing log-likelihood with Laplacian and Normal distributions.
This strong assumption often results in an “over-smoothed” pre-
diction, e.g., flat speech or a blurred image. This loss is typi-
cally applied to train both prosody prediction (i.e. duration and
f0) and spectrogram prediction models.

Normalizing Flows have demonstrated state-of-the-art per-
formance for TTS [9, 10, 16] and voice conversion [16, 17]. For
this study, we use the Flow-TTS model topology first described
in [9], illustrated in Figure 1(b). Pre-trained phoneme align-
ments are used instead of using attention following [16–18].
During training, the flow model learns a transformation of the
target feature x into the latent variable z using a series of in-
vertible flow steps f−1. Conditioning features, c, are provided
at each of the flow steps using affine coupling blocks. The flow
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Figure 1: (a) L1 or L2 Loss-based Model (b) Normalizing Flow Model (c) Training and inference stages of Diffusion Model

is trained to maximise the likelihood that z comes from a prior
distribution. This means the flow learns to map from an un-
known complex distribution of x, to a vector which comes from
a simpler prior distribution. This allows the model to optimize
for the exact log-likelihood of the data distribution. This is in
contrast to L1/L2 losses which place a strong assumption on the
distribution of x directly. For this investigation we use a simple
N (0, 1) prior distribution. During inference, the predicted fea-
tures x̃ can be derived by sampling from the prior distribution.

Diffusion models [11, 19], similarly to flows, learn to con-
vert from a simple prior distribution to the unknown complex
target feature distribution corresponding to the conditional in-
formation. Here we omit the mathematical derivation of the
diffusion models and refer the reader instead to [11, 19] for
further information. During training, noise sampled from the
distribution N (µ, I) is repeatedly added to the target feature
x at each layer of the diffusion model. As a result, eventu-
ally x, which comes from an unknown complex distribution, is
transformed to the noise distribution as the number of layers
t → ∞. By solving the SDE in [11], the vector xt, output
by layer t, can be derived directly without intermediate noisy
samples x1, . . . ,xt−1.

In parallel, a model is trained to predict the noise that was
added at each of the layers of the diffusion network, referred to
as the score-based model. The predicted noise is subsequently
removed from xt, enabling for a mapping from the noise dis-
tribution back to the target data x. During training, the mean
of the prior distribution µ is predicted from the conditional in-
formation c by a projector layer, as shown in Figure 1 (c1). An
L1 loss is applied between µ and x, meaning that the prior of
the noise is an over-smoothed spectrogram representation (sim-
ilar to that learnt by the L1/L2 approaches described above).
Note that we also attempted to use an uninformative N (0, 1)
Gaussian distribution for the noise prior, however the model
performed worse and required a larger number diffusion lay-
ers. The score-based model sθ(xt, c, t) is implemented using
a U-Net [20] architecture with c, layer t and noisy sample xt

as the inputs. Thus, the loss function consists of two parts, a
weighted score-matching objective corresponding to estimating
the score function of p(xt) and an L1 loss between µ and target
feature x.

3. Prosody and Acoustic Modelling
3.1. Prosody Models

We investigate the three model architectures described in
Section 2 for the task of prosody modelling. We define the task

of prosody prediction as the joint modelling of phoneme-level
log-f0 and duration. Frame-level log-f0 is linearly interpolated
over unvoiced regions and then mean-normalized at the speaker
level. Given the forced-aligned phoneme sequences, we aver-
age log-f0 at the phoneme-level. Duration is measured by the
number of frames aligned to each phoneme.

All models share an identical encoder architecture which
processes the input conditioning features. We vary the de-
coders and optimization steps, following Section 2. The input
to the models consists of the phoneme sequence and a categor-
ical speaking style identifier. The encoder for the phoneme se-
quence follows an identical architecture to the one described in
[3]. The one-hot speaking style identifier is transformed by an
embedding layer and concatenated to the output of the phoneme
encoder. The encoder produces the embedding c, which is
used to condition the decoder of the investigated decoder ar-
chitectures. The prosody models output two-dimensional vec-
tors, corresponding to phoneme-level log-f0 and duration. We
use phoneme-level log-f0 modelling, as a preliminary analysis
found that an acoustic model conditioned with oracle phoneme-
level log-f0 performs slightly better or identically to oracle
frame-level log-f0. Additionally, the phoneme-level approach
has the advantage of allowing joint prediction of log-f0 and du-
ration, which can better capture the relationship between the
two prosodic features.

3.2. Acoustic Models

We investigate the three model architectures in Section 2
also for the task of acoustic modelling. The inputs to all acous-
tic models are the phoneme sequence, a pre-trained speaker
embedding [21], phoneme-level log-f0 and phoneme durations.
Unlike the prosody models, the acoustic models are not condi-
tioned with speaking style information. This is because style is
largely conveyed by prosody, also speaker and style attributes
are highly entangled in the dataset used. The acoustic models
are optimized on the target mel-spectrograms, extracted from
the time-domain waveform. As above, the acoustic models
share the same encoder, but use differing decoders. The en-
coder uses the same model architecture as the prosody models.
However, unlike the prosody models, the phoneme-level condi-
tional encoding c is upsampled to the frame level before being
passed to the decoder. The speaker embedding and phoneme-
level log-f0 features are concatenated to the phoneme encod-
ings. At training time, oracle phoneme-level log-f0 and dura-
tions are provided to the acoustic model, while at synthesis-
time, we use features generated by one of the prosody models.
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4. Experimental Protocol
Throughout our experiments, we use a internal dataset of

200 speech hours, recorded by 116 native speakers of English,
across a variety of expressive speaking styles such as happiness,
sadness, anger, etc. A sampling rate of 24kHz was used for all
recordings, from which 80-dimensional mel-spectrograms were
extracted with a frame length of 50 ms and a frame shift of 12.5
ms. We use a universal neural vocoder [22] to map generated
mel-spectrograms to time-domain waveforms.

To simplify the number of comparisons, we first evaluate
the three acoustic model architectures conditioned with ora-
cle prosody features. We then select the best acoustic model
and compare the different prosody models. Following Sec-
tion 3.2, we consider three acoustic models. 1) L1-AM: acous-
tic model trained with L1 Loss. An L1 loss-based model is
investigated instead of L2 following recent work [4, 5, 23]. 2)
Flow-AM: Flow-based acoustic model. 3) Diff-AM: Diffusion-
based acoustic model. In addition, we define an upper-bound
by copy-synthesis, generating time-domain waveforms from or-
acle mel-spectrograms with the universal neural vocoder. This
system is termed ORA-AM. Once the best performing acoustic
model is selected, we compare the different prosody models. 1)
L2-PM: prosody model trained with L2 loss. This is selected
as it features heavily in recent studies [3, 4, 13, 24]. 2) Flow-
PM: Flow-based prosody model. 3) Diff-PM: Diffusion-based
prosody model. As before, an upper-bounded system ORA-P
is created by feeding the acoustic model with oracle prosody
features.

We conduct subjective evaluations of the models using a
MUSHRA standard reference evaluation paradigm, consider-
ing Naturalness, Style Similarity and Expressiveness. Each
listening test included 300 utterances generated by each of the
competing systems. Utterances were rated by 300 native speak-
ers using a crowdsourcing platform. Each listener rated 15
MUSHRA screens. We test for statistical significance between
systems using paired t-tests with Holm-Bonferroni correction
applied. All reported significant differences are at the level of
p < 0.05. We assign Naturalness and Style Similarity higher
importance because we consider higher expressiveness to be fa-
vored only if there are no impacts on naturalness and style sim-
ilarity. We also adopt objective metrics to further analyze the
generated prosody features. We observe the standard deviation
(STD) of log-f0, ∆log-f0 and duration. These statistics mirror
the dynamics of the prosody features that can be associated with
the expressiveness of speech [25]. Additionally, we apply the
Jensen-Shannon divergence (JSD) [15] to measure the distance
between oracle and generated features.

5. Experimental Results
5.1. Acoustic Models

For inference with Flow and Diffusion models, we sam-
ple a latent variable from a prior distribution. The temperature
τ , i.e., standard deviation, of that distribution can impact the
quality of generated speech [10, 11]. Typically, high tempera-
ture values, such as τ = 1, bias the model to produce more
varied speech, but can negatively impact quality. Meanwhile,
a low temperature value often results in flatter intonation [10].
We investigate the temperature which best manages the trade-
off of expressivity and quality for the Flow and Diffusion-based
models by conducting naturalness subjective evaluations. We
consider τ ∈ {0.2, 0.4, 0.6, 0.8} and present results in Table 1.
The highest temperature is chosen when its corresponding Nat-

uralness MUSHRA scores have no statistically significant dif-
ference from the highest MUSHRA scores. Therefore, τ = 0.4
and τ = 0.8 were selected for Flow-AM and Diff-AM, respec-
tively. We also observe that τ has a much larger impact for the
Flow-based system than for the Diffusion-based system, imply-
ing that careful temperature tuning is especially important for
Flow-based systems.

Table 1: MUSHRA naturalness evaluation results for tempera-
ture τ , showing mean values with 95% confidence intervals. *
indicates no statistically significant difference from the highest
MUSHRA scores.

System τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8

Flow-AM 77.95± 1.12 77.39± 1.13∗ 77.03± 1.14 72.86± 1.41
Diff-AM 78.13± 1.12 79.20± 1.01 79.79± 1.06∗ 80.01± 1.05

Using the selected temperatures for the Flow- and
Diffusion-based systems, we compare all acoustic models con-
ditioned with oracle f0 and duration. Results for all systems
across the three evaluation metrics are presented in Table 2.
In terms of naturalness, there are no significant differences be-
tween the three acoustic models. ORA-AM is significantly pre-
ferred over L1-AM and Diff-AM. However, there is no signif-
icant preference between ORA-AM and Flow-AM. In terms of
style similarity, there is no significant difference between Flow-
AM and L1-AM, however both outperform Diff-AM. In terms
of expressiveness, Diff-AM is found to significantly outperform
the remaining two systems, while there is no significant dif-
ference between Flow-AM and L1-AM. We hypothesize that
ORA-AM is rated higher than all three systems in terms of style
similarity and expressiveness because, in addition to the oracle
prosody features, some speaking styles are expressed by alter-
native acoustic attributes (e.g., laughing). It is somewhat sur-
prising that Diff-AM achieves higher expressiveness but lower
style similarity scores than the other two systems. A possible
explanation for this is that we are using a higher temperature
for the Diffusion-based acoustic model, which may come at the
cost of style similarity.

To investigate our results further, we conduct a naturalness
preference test on the two best performing systems: L1-AM
and Flow-AM. Relative preference scores for L1-AM, Flow-
AM, and No Preference are 24.72%, 29.33%, and 45.95% re-
spectively. A binomial significance test with the No Preference
scores divided equally amongst the two competing systems in-
dicates a statistically significant preference for Flow-AM at the
level of p < 0.05. Therefore, the Normalizing Flow system is
found to provide the best results overall. Consequently, Flow-
AM is selected to evaluate the prosody models.

Table 2: Mean MUSHRA scores for acoustic models using ora-
cle f0 and duration, with 95% confidence intervals.

Method Naturalness Style Similarity Expressiveness

ORA-AM 78.2± 1.11 79.75± 0.97 83.16± 0.83

L1-AM 76.87± 1.13 77.17± 1.07 78.65± 0.96
Flow-AM 77.07± 1.11 77.29± 1.04 78.69± 0.97
Diff-AM 76.40± 1.21 76.20± 1.11 79.49± 0.98

5.2. Prosody Models

As before, we begin by finding the best temperature τ for
the Flow- and Diffusion-based prosody models. We keep the
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Figure 2: Distribution of log-f0 values generated by the differ-
ent Prosody Models.

acoustic model (Flow-AM) fixed and condition this with the
generated f0 and duration from the various prosody models. We
evaluate the speech samples in terms of naturalness, with re-
sults shown in Table 3. Following the same criterion, we choose
τ = 0.4 and τ = 0.8 for Flow-PM and Diff-PM, respectively.

Table 3: MUSHRA naturalness evaluation results for tempera-
ture τ , showing mean values with 95% confidence intervals. *
indicates no statistically significant difference from the highest
MUSHRA score.

System τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8

Flow-PM 74.36± 1.10 73.94± 1.12∗ 72.28± 1.10 70.74± 1.10
Diff-PM 78.40± 0.83 78.27± 0.84∗ 77.92± 0.87∗ 77.71± 0.88∗

We present the results for objective metrics in Table 4. Re-
sults find that Flow-PM and Diff-PM produce features with
higher standard deviations than L2-PM. This confirms that
the proposed prosody models are able to mitigate the over-
smoothing problem and produce more dynamic prosody fea-
tures, which can lead to more expressive speech. Considering
JSD, we observe that Diff-PM and Flow-PM produce features
that are closer to the distribution of oracle features. This can
also be seen by the log-f0 distribution from the different prosody
models in Figure 2. Most of the f0 values from L2-PM are con-
centrated around 0. In contrast, the distributions of f0 from the
other two systems are more dispersed and have longer tails, in-
dicating better distribution coverage.

Table 4: Standard deviation (STD) and Jensen-Shannon diver-
gence (JSD) for the different prosody models.

System STD JSD

log-f0 dur ∆log-f0 log-f0 dur

ORA-P 0.24 4.49 0.19 - -

L2-PM 0.14 4.03 0.09 0.163 0.112
Flow-PM 0.19 4.12 0.14 0.073 0.067
Diff-PM 0.21 4.27 0.15 0.057 0.041

Table 5 shows the results from the subjective evaluations
of the prosody models. There are no significant differences
between the three competing systems and ORA-P in terms of
naturalness. This finding is perhaps unexpected and suggests
that there is little room for naturalness improvement, on av-
erage across all speech samples. However, when we consider
only utterances from speaking styles with high arousal, such as
anger or happiness [26], Diff-PM and Flow-PM have a larger
gap to L2-PM, with Flow-PM outperforming L2-PM. The re-
sults indicate that Flow-PM and Diff-PM can contribute most

to prosody modelling for styles with high arousal. In terms of
style similarity and expressiveness, no significant differences
are found between Flow-PM, Diff-PM and ORA-P. Both Flow-
PM and Diff-PM are found to significantly outperform L2-PM.
It is somewhat surprising that Diff-PM and Flow-PM are both
on par with ORA-P in terms of naturalness, style similarity and
expressiveness. Specifically, the objective analysis in Table 4
found the oracle prosody features to have larger standard devi-
ations than those from Diff-PM and Flow-PM, however it ap-
pears as though these differences do not result in listener pref-
erences. A possible explanation for this could be that the ex-
pressiveness in speech also depends on how the acoustic model
represents the prosody features.

We conducted follow-up preference tests for Diff-PM and
Flow-PM in terms of naturalness, style similarity and expres-
siveness. However, no significant differences were found be-
tween Flow-PM and Diff-PM for any of the metrics. Overall,
Flow-PM and Diff-PM are on par with each other, but signifi-
cantly preferred to L2-PM.

Table 5: Mean MUSHRA scores for prosody models, along with
95% confidence intervals.

Method Naturalness Style Similarity Expressiveness

ORA-P 79.61± 0.90 78.62± 0.91 77.20± 0.92

L2-PP 79.02± 0.94 76.49± 0.98 75.74± 0.99
Flow-PM 79.41± 0.88 78.23± 0.91 77.17± 0.89
Diff-PM 79.51± 0.92 78.10± 0.92 77.32± 0.91

6. Discussion
Both flow and diffusion approaches learn a mapping of the

target features, coming from complex unknown distributions,
transforming them to points from defined simple prior distri-
butions. Losses applied during training are made relative to
the likelihood of the prior distribution. However, L1/L2-based
models place a strong assumption that the distribution of the
target features is a Gaussian and return values that come from
the mean of the distribution, resulting in less expressive predic-
tions. We hypothesise that the U-Net structure within the diffu-
sion model is good at generating features considering long-term
dependencies, a desirable trait for prosody modelling. However,
for acoustic modelling, when provided with prosody condition-
ing the long-term information is already being largely explained
to the model. Instead, the acoustic model is being asked to fo-
cus on short-term quality of generated individual spectrogram
frames. For such a task it appears that the diffusion model does
not perform as well as flow or L1-based models.

7. Conclusion
In this paper, we study and compare three different method-

ologies for acoustic and prosody modelling: normalizing flows,
diffusion probabilistic models, and models trained with L1/L2
loss. For acoustic modelling, subjective evaluation results
suggest that an acoustic model based on Normalizing Flows
achieves the best results. For prosody modelling, we observe
comparable performance for flow-based and a diffusion-based
models in terms of naturalness, style similarity and expressive-
ness. In terms of both objective and subjective evaluation, the
prosody features predicted from flow-based and diffusion-based
models demonstrate improved expressiveness and better style
similarity than the prosody model optimized using an L2 loss.
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[16] P. Biliński, T. Merritt, A. Ezzerg, K. Pokora, S. Cygert, K. Yanag-
isawa, R. Barra-Chicote, and D. Korzekwa, “Creating new voices
using normalizing flows,” in Proc. Interspeech, 2022.

[17] T. Merritt, A. Ezzerg, P. Biliński, M. Proszewska, K. Pokora,
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