
Speaker Extraction with Detection of Presence and Absence of Target Speakers

Ke Zhang1,2, Marvin Borsdorf3, Zexu Pan2, Haizhou Li4,3,2, Yangjie Wei1, Yi Wang1

1Key Laboratory of Intelligent Computing in Medical Image, Northeastern University, China
2Department of Electrical and Computer Engineering, National University of Singapore, Singapore

3Machine Listening Lab (MLL), University of Bremen, Germany
4SDS, SRIBD, The Chinese University of Hong Kong, Shenzhen, China

1910621@stu.neu.edu.cn, marvin.borsdorf@uni-bremen.de

Abstract
Target speaker extraction extracts a target voice from a given
cocktail party mixture signal. Most studies are restricted to
conditions in which the target speaker is present in the mixture
(PT), which often fail when the target speaker is absent (AT).
Training on both PT and AT situations helps, but degrades the
PT performance as the model intrinsically tries to detect the
target presence. We propose a new model, called TSEJoint,
that jointly performs target speaker detection and extraction.
Both tasks share the low-level modules, allowing the detection
branch to use a pre-separated signal and keeping the overall
processing pipeline length similar, while at the high-level they
have different branches to ensure the performance of each task.
We evaluate our proposed methods under PT and AT conditions
comprising one and two talkers. The TSEJoint model shows
better extraction performance under the PT condition and bet-
ter detection performance on all conditions compared with the
baseline.
Index Terms: cocktail party problem, target speaker extraction,
speaker detection, selective auditory attention, absent speaker

1. Introduction
Speech constitutes an important role in human-computer inter-
actions. However, speech processing algorithms [1–6] are ad-
versely affected by overlapping speakers. Blind source sepa-
ration is a method that separates the overlapping speech signal
into the individual clean source streams [7–10]. This method
faces the global permutation ambiguity, especially in continu-
ous separation, which makes it hard to maintain the output per-
mutation of speech signals.

Target speaker extraction (TSE) is an alternative technique,
that only extracts the target speaker’s voice from a cocktail party
mixture signal by utilizing a given reference signal of the target
speaker. In addition to the pre-recorded speech as reference sig-
nal [11–16], other modalities such as face [17,18], gesture [19],
or text [20] information could also be used.

In natural speech communication, interlocutors typically
take turns to speak. Thus, the target speaker may or may not
be present in a speech mixture signal to be processed by TSE
algorithms. When the mixture speech signal contains the speech
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signal of the target speaker, it is referred to as present target (PT)
condition. When the target speaker says nothing in the mixture,
it is called the absent target (AT) condition [21]. For real-world
applications, a TSE algorithm has to produce a reliable output,
independent of the number of speakers in the mixture and re-
gardless of whether the target speaker is present or not. How-
ever, most TSE algorithms have been studied only under the PT
condition. Applying those methods under the AT condition re-
sults in extracting wrong signals from the mixture as the model
has been trained to extract a speech signal that follows the given
reference signal [21].

There are mainly two strategies for addressing the TSE
problem under AT conditions. The first approach directly trains
the TSE model on both PT and AT conditions [21, 22], to out-
put the target speech for the PT condition and a zero (silent)
signal for the AT condition. Borsdorf et al. [21] proposed a
silence-evaluating scale-invariant signal-to-distortion ratio (SE-
SI-SDR) loss function to cater to the AT condition. It maxi-
mizes the scale-invariant similarity between the target speech
and the extracted speech on the PT condition, while minimizing
the energy of the extracted speech on the AT condition. There-
fore, it is hard to determine whether the TSE model trained by
SE-SI-SDR has the ability to distinguish the absence and pres-
ence situations, or only adjust the energy of the outputs. Del-
croix et al. [22] proposed an approach named TSE-IS, for ad-
dressing the TSE problem on AT conditions, but only consid-
ering the two-talker situation. TSE-IS is similar to Borsdorf et
al. [21], but selects two scale-dependent loss functions for PT
and AT samples, respectively. A disadvantage of this strategy is
that the performance under the PT condition usually degrades,
as the model not only has to extract the target speech, but also
has to verify whether the speech belongs to the target speaker
intrinsically.

The second strategy trains the TSE model on the PT condi-
tion only, and applies an additional speaker verification module
on the extracted speech to determine the target presence [22,23].
However, the additional verification module increases the pro-
cessing time. In addition, there are also some works about
speaker verification under multi-talker environments [24–26].

In this work, we study the TSE model under four condi-
tions, simulating the presence and absence of target speakers
for speech of one and two talkers. Following the definitions
in [21], we refer to the described conditions as 2T-PT, 1T-PT,
2T-AT, and 1T-AT in this paper. 2T and 1T describe the two-
talker and the one-talker conditions and with PT and AT we in-
dicate present target and absent speaker conditions. On 2T-PT
and 1T-PT conditions, we expect the TSE model to output the
speech of the target speaker while on 2T-AT and 1T-AT condi-
tions, the model is expected to output a zero (silent) signal.

To balance the training for different conditions, we intro-
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duce a modified loss function based on TSE-IS [22] with an ad-
justable weight for the AT loss. The weight controls the learning
direction of the TSE model towards different conditions, thus
enabling the study of the relationship between extraction and
detection as opposed to [21, 22].

In addition, we believe that extraction and detection are
closely related tasks that could benefit from each other. We
propose a new model, called TSEJoint, that jointly performs
target speaker detection and extraction. Both tasks share the
same low-level modules, allowing the detection branch to use
a pre-separated input signal and keeping the overall processing
pipeline length similar, while at the high-level they have differ-
ent branches to ensure the performance of each task. The TSE-
Joint model achieves better extraction results on the PT condi-
tion compared to the baseline TSE model, and a better detection
rate on all conditions compared to the approach of only training
the TSE model on PT and AT conditions together.

2. Proposed Methods
First, we introduce a modified loss function for directly training
the TSE model on PT and AT conditions. Secondly, we propose
a new model, called TSEJoint, which adopts the SpEx+ [13]
architecture combined with an additional detection module.

2.1. Weighted loss function for baseline TSE model

The key of adapting TSE models to the AT condition is given
by the loss function, which should balance the learning progress
on both PT and AT conditions, avoiding dominating the gra-
dient by one of these conditions. As discussed in Section 1,
the loss function should be scale-dependent for all conditions.
As in [22], we select the negative threshold SNR (tSNR)
loss [27, 28] and the logtmse loss [29] for present and absent
target samples, respectively. Additionally, we add a weight α
for the AT loss to control the learning direction as follows:

Lmix =

{
LtSNR, s ̸= 0

αLlogtmse, s = 0
(1)

LtSNR = −10 log10
||s||2

||s− x||2 + τ1||s||2
(2)

Llogtmse = 10 log10(||x||2 + τ2||y||2) (3)

where s ∈ RT is the target signal, x ∈ RT is the extracted
speech, y ∈ RT is the mixture signal, and T is the duration of
the speech signal. We set τ1 as 10−3 and τ2 as 10−2 to cre-
ate two soft thresholds for preventing the samples with nearly
perfect extraction output from dominating the gradients. Com-
pared with the vanilla negative signal-to-distortion ratio (SDR)
loss:

LSDR = −10 log10
||s||2

||s− x||2 (4)

the value of LtSNR is limited by τ1 to -30 dB (see Section 4).

2.2. TSEJoint model

By analyzing the approach introduced in Section 2.1, we find
the performance of the TSE model on the AT condition is
achieved by sacrificing its performance on the PT condition. In-
spired by this, we split the task and the output of the TSE model,
and propose a family of models, called TSEJoint (TSEJoint2,
TSEJoint3, and TSEJoint4), which is based on SpEx+ with an
additional detection module. Figure 1 shows the structure of
TSEJoint2, in which the detection module branches out after the
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Fig. 1: The model structure of TSEJoint2. The dotted box indicates
the original SpEx+ architecture and the left part shows the detection
module. In TSEJoint3, the detection module starts at the 3rd stacked
TCNs block of the Speaker Extractor and comprises one stacked TCNs.
In TSEJoint4, the detection module starts at the 4th shared TCNs block
without any own stacked TCNs.

second stacked temporal convolutional networks (TCNs) block
of the SpEx+ model.

The detection module in TSEJoint is designed for the detec-
tion of the target speaker. For simplicity, we use the same TCNs
block, 1-D CNN layer, and mean-pooling layer as in SpEx+ for
building the detection module. Binary cross entropy (BCE) loss
is applied for training the detection module. For maintaining the
extraction performance of TSE on PT conditions, we only train
the extraction part in TSEJoint by using LtSNR or the negative
SDR loss with PT samples. The remaining part of TSEJoint is
trained on both PT and AT conditions.

The TSEJoint models determine the final output on all con-
ditions by analyzing the output of the detection module as fol-
lows:

xd =

{
x, cd ≥ cthreshold

0, cd < cthreshold
(5)

where xd is the output with detection, x is the extracted speech,
cd is the output of the detection module, and cthreshold is a
threshold commonly determined by calculating the Equal Error
Rate (EER). We refer to this step as detection, which is essential
for applying the TSEJoint model on AT conditions.

We create different model instances, namely TSEjoint2,
TSEJoint3, and TSEjoint4. The number in the name repre-
sents on how many stacked TCNs the detection module runs
on. In order to not extend the processing pipeline length of
the TSE model, TSEJoint2 and TSEJoint3 have two and one
stacked TCNs in the detection module, respectively. The TSE-
Joint4 model has no additional stacked TCNs.
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Table 1: Speaker extraction with/without detection on two-talker conditions. Atten. refers to the attenuation from the mixture. The numbers before
Llogtmse are the value of α referring to the weight. The loss of the TSEJoint contains two parts for training both the extraction module and the
detection module. We set the loss for extraction to zero for the AT condition. The cross entropy (CE) loss for the speaker encoder module in SpEx+ and
TSEJoint has been omitted for simplicity. The input SDR is 0 dB.

Sys Models
Training Without detection With detection
Data sets Loss Functions SDR (dB) Atten. (dB) SDR (dB) Atten. (dB) EER # Params

2T-PT 2T-AT PT AT 2T-PT 2T-AT 2T-PT 2T-AT (%)

1 SpEx+ ✓ ✗
LSDR - 17.0 -5.1 - - 37.6 11.14 M2 LtSNR - 16.9 -5.1 - - 38.5

3

SpEx+ ✓ ✓ LtSNR

0.001 · Llogtmse 16.8 -29.2 13.3 -147.4 26.7

11.14 M4 0.01 · Llogtmse 16.4 -130.9 14.8 -164.7 17.9
5 0.05 · Llogtmse 16.1 -167.1 15.7 -176.4 12.0
6 0.1 · Llogtmse 15.4 -167.0 15.2 -176.8 11.8

7 SpEx+ V ✓ ✗ LSDR - 17.0 -5.1 12.3 -144.7 28.3 11.14 M

8 TSEJoint2
✓ ✓

LSDR 0 17.2 -5.0 15.5 -178.9 10.8 15.70 M
9 TSEJoint3 + + 17.4 -5.1 16.1 -179.2 10.6 13.48 M
10 TSEJoint4 LBCE LBCE 16.5 -5.2 15.1 -178.3 11.1 11.21 M

3. Experimental Setup
3.1. Data set

As in [21], we evaluate our proposed methods on an extended
version of the WSJ0-2mix-extr data set [30] to cover four dif-
ferent conditions: 2T-PT, 1T-PT, 2T-AT, and 1T-AT. The 2T-PT
data set is the same as the WSJ0-2mix-extr data set, which con-
tains 20,000, 5,000, and 3,000 utterances for training, valida-
tion, and testing, respectively. The training and validation sets
share the same 101 speakers, whereas the 18 speakers in the test
set are different. We utilize the utterances twice by switching
the target speaker in the mixture. The 1T-PT data set is created
by replacing the input mixtures with a clean speech signal of
the target speakers. For the absent target conditions, the 2T-AT
and 1T-AT data sets use the same mixtures of the correspond-
ing PT data sets, but the reference utterances are different from
the speakers given in the input mixture. The target signal data
is replaced with a silent audio file with the same length as the
respective input mixture. The details can be found in [21]. The
data is sampled with 8 kHz. For the two-talker conditions, we
use the min version and an overlap ratio of 100%.

3.2. Training details

We select the SpEx+ [13] as the baseline TSE model for evalu-
ating the approach proposed in Section 2.1. First of all, we train
the SpEx+ and the TSEJoint models on two-talker condition
(2T-PT and 2T-AT) only, since we think the two-talker condi-
tion is more difficult and representative. Secondly, we study the
conditions of PT (2T-PT and 1T-PT) and one-talker (1T-PT and
1T-AT) separately. Finally, we train and test the models on all
four conditions.

We train all models for 100 epochs on segments with 4 sec-
onds. The learning rate is set to 1e−4 and decays by 0.5 if
the development loss does not improve within two consecutive
epochs. The configuration of the SpEx+ is the same as in [13].

3.3. Evaluation metrics

To evaluate the extraction performance for PT conditions, we
apply the SDR:

SDR = 10 log10
||s||2

||s− x||2 (6)

For AT conditions, we apply the attenuation from mixtures [22]:

A = 20 log10(
||x||
||y|| + 1e−10) (7)

We use the EER to evaluate the detection performance. For
SpEx+, the EER is calculated based on the value of attenuation.
For TSEJoint, the EER is calculated on cd which is the output
of the detection module. Detection (Equation 5) is essential for
applying the TSEJoint model on AT conditions, and optional
for SpEx+ by analyzing the value of attenuation:

xd =

{
x, A ≥ Athreshold

0, A < Athreshold

(8)

where Athreshold is a threshold of the attenuation determined
by the EER. We present the results without detection and with
detection in Section 4 for the models that have been trained on
both PT and AT conditions.

4. Results
4.1. Two-talker conditions

We first train and test SpEx+ as well as TSEJoint on the two-
talker conditions. Table 1 shows the results. Sys 1 with LSDR

and Sys 2 with LtSNR trained only on 2T-PT provide the
baseline results and show similar performances. Both scale-
dependent loss functions lead to an EER around 38%.

Sys 3-6 are the results of SpEx+ trained with Lmix and with
different values of α under PT and AT conditions. With smaller
α, the performance on 2T-PT is closer to the baseline results, but
the EER degrades. The outputs’ energy of Sys 3-6 are naturally
lower than Sys 1-2 on 2T-AT. When we gradually increase the
weight of Llogtmse for the samples with absent target speaker,
the ability of SpEx+ in terms of speaker detection improves.
However, this improvement is not unlimited. When we set α
to one, SpEx+ always outputs zero signals on both conditions,
and the model loses both the ability of speaker extraction and
detection. We balance Sys 5 with α set to 0.05, to obtain a good
performance on both 2T-PT and 2T-AT conditions.

For Sys 3-6 with detection by using Equation 8, the attenu-
ation on AT conditions reaches a relatively good level, while the
SDR on 2T-PT becomes worse because some samples on 2T-PT
are wrongly detected as AT conditions, resulting in zero output
instead of extracting the speech signal.
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Table 2: Speaker extraction results with/without detection on different test conditions when being trained on different training data compositions.

Line Models Training Without detection With detection

Data sets Testset Loss Functions SDR (dB) Atten. (dB) SDR (dB) Atten. (dB) EER (%)
PT AT PT AT PT AT Testset All

1

SpEx+ 2T-PT & 1T-PT

2T-PT LSDR - 14.2 - - - - -
2 1T-PT 49.3 - - - - -
3 2T-PT LtSNR - 16.7 - - - - -
4 1T-PT 55.0 - - - - -

5 SpEx+ All 4 conditions 2T LtSNR
0.05 · 15.9 -161.4 14.9 -176.8 11.8 9.06 1T Llogtmse 50.0 -183.3 48.7 -187.8 6.1

7 TSEJoint3 All 4 conditions 2T LtSNR+ 0 + 16.8 -5.1 15.7 -180.4 10.0 7.98 1T LBCE LBCE 54.8 -24.0 51.5 -187.9 6.0

Sys 7 uses the same approach as TSE-V [22]. Considering
the speaker embedding extraction module has not been trained
on the extracted speech which contains some residual noise and
interference, we think a high EER is reasonable. In addition
to Sys 7, we also test this approach on SpEx+ trained with the
SI-SDR [31] loss, leading to an EER of 43.2%.

Among the TSEJoint models, Sys 9 shows the best perfor-
mance and can also outperform the baseline models on the 2T-
PT condition, even if those are experts on this condition. The
results in terms of SDR are notable, since adding AT samples
seems to not harm the performance under PT conditions but
rather improves it. The SDR of Sys 10 is lower compared to
Sys 8-9 and Sys 1. We think this could be attributed to the
missing TCN block in the structure of the detection module in
TSEJoint4. The tasks of extraction and detection may interact
with each other for the dominance of the shared TCN blocks in
the extractor module. This could be a possible explanation for
the trade-off performance on PT and AT conditions for Sys 3-6.

For applying Sys 8-10 on AT conditions, the detection is
necessary. With detection, the SDR on 2T-PT has a certain de-
gree of decline, while the attenuation becomes a good level.
Comparing Sys 9 (with detection) with Sys 5 (without detec-
tion), Sys 9 shows a similar SDR on 2T-PT and a better EER,
resulting in a better ability of target speaker detection. Sys 9
has substantial advantages when being only applied on PT con-
ditions, and it also has a better applicability on all conditions,
because the performance on PT and AT conditions can be easily
controlled by adjusting the threshold of detection.

In addition to the above models, we also train the detection
branch in the TSEJoint individually without the extraction. The
EER is 12.8% which is not as good as the performance of the
TSEJoint models that perform extraction and detection at the
same time. This result validates our assumption that detection
and extraction can benefit from each other.

4.2. One-talker conditions and PT conditions

We test the detection ability of SpEx+ and TSEJoint3 on
one-talker conditions (1T-PT and 1T-AT). The TSEJoint3
achieves an EER of 7.9%. However, for the SpEx+ trained by
Lmix, there are only two kinds of outputs. With a small α in
Lmix, the SpEx+ always outputs the extracted speech on both
PT and AT conditions. With a relatively larger α, the output
becomes a zero signal, and the attenuation is close to the lower
limit at -200 dB on both conditions. In either case, the EER is
around 50%. We don’t find a suitable value of α, since the inter-
vals of α values in the two cases overlap. Training the SpEx+
by Lmix is influenced by different factors, such as the learn-
ing difficulty of the model on PT and AT conditions, and the

gradient change caused by the convergence.
The results on one- and two-talker PT conditions (2T-PT

and 1T-PT) are shown in Line 1-4 of Table 2. We use LSDR

and LtSNR to train the SpEx+ on PT conditions, and show the
results on 2T and 1T conditions separately. Compared with the
SpEx+ trained on 2T-PT only in Table 1, the SDR on 2T-PT
decreases by 0.2 dB when using LtSNR, which is acceptable.
The SDR on 1T-PT shows a good result with 55.0 dB. However,
by using LSDR, the SDR on 2T-PT decreases by 2.8 dB. We
think the reason is the imbalance of extraction difficulty on 2T-
PT and 1T-PT conditions, when using vanilla negative SDR as
training loss and training from scratch.

4.3. All four conditions

From Table 1, we select the SpEx+ (Sys 5) and the TSEJoint3
(Sys 9) and train each model on all four conditions. We replace
the training loss LSDR by LtSNR based on the results on one-
and two-talker PT conditions. The results are shown in Table 2.

Line 5-6 show the results of the SpEx+ trained on all four
conditions. Compared with line 3-4, the SDR (without detec-
tion) decreases by 0.8 dB and 5.0 dB on 2T-PT and 1T-PT, re-
spectively. The EER on the two-talker conditions (2T-PT and
1T-PT) is 11.8%, which is slightly better compared to Sys 5
(Table 1) that is trained on the two-talker conditions only. The
problem when only being trained on the one-talker conditions,
depicted in Section 4.2, does not arise, and the EER on one-
talker conditions is 6.1%.

Line 7-8 show the results for the TSEJoint3 trained on all
4 conditions together. Without detection, the model achieves
similar extraction results compared to the SpEx+ when being
trained on PT conditions only with LtSNR. For applying the
TSEJoint3 on all conditions, the detection is essential. The
TSEJoint3 with detection achieves similar extraction perfor-
mance compared to the SpEx+ trained with Lmix without de-
tection. However, the EER improves to 10.0% and 6.0% on
two-talker and one-talker conditions, respectively.

5. Conclusion and Future Work
In this work, we studied different strategies to train TSE models
on present and absent target speaker conditions. We proposed
a new model based on the combination of a SpEx+ architecture
and an additional target speaker detection module. Our model
achieves superior performance on both the speaker extraction
task and the speaker detection task without extending the pro-
cessing pipeline length of the whole system. In our future work,
we will focus on the optimization of the detection module to in-
crease the accuracy of the target speaker detection.
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