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Abstract
Sentence boundary detection (SBD) in speech, aimed at

segmenting the sentence units from the audio speech, plays a
significant role in a broad range of tasks such as automatic
speech recognition and speech translation. Previous studies
have explored the solution based on basic acoustic features and
high level semantic representation. Although widely studied,
sentence boundary detection still remains a challenge when ap-
plied to different speech styles, including the global style and
local style. To improve the robustness of SBD in the scene of
different speech styles, we propose Global and Local Speech
Style Disentanglement (GL-SSD) by vector quantization from
the raw speech and incorporate the disentangled style represen-
tations into the semantic representation. Relevant experiments
demonstrate the superior performance of the proposed method
compared to other recent mainstream methods.
Index Terms: sentence boundary detection, Speech and audio
segmentation, vector quantization

1. Introduction
Sentence boundary detection (SBD) [1] is a crucial part in the
human understanding of spoken language. AS shown in Fig-
ure 1, SBD aims to detect the sentence boundaries and segment
the proper sentence units from the raw speech. It is an important
step for many speech-related tasks, such as automatic speech
recognition (ASR) [2] and speech translation (ST) [3].

Methods for SBD can be generally classified into text-based
and acoustic-based. The text-based SBD is usually applied in
the cascaded speech translation systems [4]. It depends on the
transcribed texts or the lexical features to predict the sentence
boundary. The acoustic-based SBD usually works for the end-
to-end speech translation systems [5], where the transcribed
texts are not available and the sentence boundaries need to be
detected with the raw audio. In this study, we limit the scope to
the acoustic-based SBD, where only the acoustic information is
available for boundary detection.

SBD in speech is challenging because the speaker may
leave an incomplete sentence, pause for a period of different
lengths, or speak for a long time without pausing [6]. The sen-
tence boundary is closely related to the speech styles includ-
ing speech rate, pause length, pause timing , and so on [7, 8],
which are varied with the different speakers. Based on the com-
prehensive observation of different speeches, we further find
that there are global speech styles and local speech styles. The
global speech styles are related to the habits or characters of the
speaker. While the local speech styles are related to the specific
situation throughout the speaking process. Different global and
local styles lead to different speech rates and pause lengths, and
will further influence the semantic sentence boundaries.

Sentence  units Sentence  boundaries

Figure 1: Introduction of the sentence boundary detection

In this study, we propose to disentangle the global and lo-
cal speech styles from the raw speech to improve the robust-
ness of SBD in the scene of different speech styles. The pro-
posed method first adopts a self-supervised approach for Global
and Local Speech Style Disentanglement (GL-SSD) by vector
quantization from the raw speech. Then the disentangled rep-
resentations of global and local speech styles are incorporated
into the semantic representation to train a sequence classifica-
tion model for robust sentence boundary detection. We verified
the superior performance of the proposed GL-SSD across four
different spoken languages of French, Spanish, Portuguese and
Italian. Relevant experiments on the Multilingual TEDx (mT-
EDx) dataset [9] show that the proposed methodology outper-
forms other mainstream methods by a large margin.

2. Related work
Early studies on SBD considered modeling the basic acoustic
features with traditional machine learning methods like hid-
den Markov model (HMM)[10, 11], conditional random fields
(CRF) [12, 13, 14], decision trees (DT) [10] and support vector
machines (SVM)[15, 16, 17].

Recently, some researchers attempt to improve the perfor-
mance of SBD with the help of voice activity detection (VAD)
[18] algorithms or wav2vec 2.0 model [19]. VAD-based meth-
ods [20, 21] detect the silences in the audio and get the sentence
boundaries according to specific rules. Inaguma et al. [20] uti-
lized the heuristic concatenation of VAD segments up to a fixed
length to detect the sentence boundary. In [21], Gaido et al. pro-
posed a VAD-hybrid method by giving more importance to the
target segments’ length than to the detected pauses to improve
the performance. Wav2vec 2.0 based methods [22, 23, 24] uti-
lized the semantic representations pretrained from large scale
of speech corpus to predict the sentecne boundaries. Marie
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Figure 2: Overall architecture of the proposed GL-SSD. The dotted boxes represent the intermediate outputs of different modules. GSE,
LSE and SE represent global style encoder, local style encoder and semantic encoder, respectively. GSC and LSC represent global style
codebook and local style codebook, respectively. More details are shown in Section 3.1.1.

Kunešová et al. [22] propose to utilize the wav2vec 2.0 pre-
trained model to train a sequence classification model to predict
whether each wave frame is speech unit or a boundary. In [23]
and [24], the wav2vec 2.0 pretrained model was utilized to seg-
ment the sentence units for end-to-end speech translation.

The VAD-based methods often split audio at inappropriate
boundaries because they mainly segment the speech boundaries
based on long pause which does not coincide with the semantic
sentence boundaries. In addition, the hyper-parameter of VAD-
based methods is hard to adjust to a proper value which is adap-
tive to various cases. The methods based on wav2vec 2.0 model
usually perform better than the VAD-based methods because
they can utilize the semantic representation pretrained from a
large scale of speech corpus. The semantic representation can
help to predict a better semantic sentence boundary to some de-
gree. However, the methods based on wav2vec 2.0 model still
struggle to deal with the case of various speech styles since they
could hardly adapt to different speech styles of various speak-
ers. In order to deal with the different speech styles, we propose
a robust method for SBD in speech stream by incorporating the
disentangled representations of global and local speech styles
into the semantic representation.

3. Methodology
The proposed method adopts a two-stage strategy to train a ro-
bust sentence boundary detection model. The first stage is to
train the disentangled representations of global and local speech
styles by vector quantization. The second stage is to train a
frame-level sequence classification model for SBD based on the
learned hybrid representations.

3.1. Train the disentangled representations of global and lo-
cal speech styles

3.1.1. Model architecture

The first stage trains the disentangled representation of global
and local speech styles with a self-supervised manner. The
overall model architecture is shown in Figure 2. The core mod-
ule of the proposed GL-SSD is the Speech Style Disentangle-
ment Module (SSDM) which disentangles the global and local

speech styles by vector quantization. Given a long untrimmed
speech of a specific speaker, a speech snippet xi is randomly
sampled from the untrimmed speech as the objective sample
to be reconstructed. This speech snippet is input to a seman-
tic encoder SE and a local style encoder LSE, thus produce the
semantic representation Fs ∈ Rd×t and the local style feature
Fl ∈ Rd×t. Here, t is the length of the feature and d is the
dimension size of the feature. Several other n speech snippets
(xj ,xj+1,...,xj+n−1) are also randomly sampled from the same
raw speech of the same speaker. These speech snippets are in-
put to the global style encoder GSE and then averaged to pro-
duce the global style feature Fg ∈ Rd×1. The global style fea-
ture Fg is vector-quantized through the global style codebook
GSC, and the local style feature Fl is vector-quantized through
the local style codebook LSC. Thus Fg is transformed to the
vector-quantized global style representation Fgq ∈ Rd×1 and
Fl is transformed to the vector-quantized local style representa-
tion Flq ∈ Rd×t. Referred to [25], the vector-quantization is a
process which can quantize a sequence of continuous data into
the closest discrete code. Specifically, given Z as a sequence
of continuous data, that is, Z = z0, z1, ..., zt. Then the vector-
quantization process can be described as:

V Q(Z) = q0, q1, ..., qt (1)
qj = argmin

q∈codebook
(q − zj) (2)

Then the vector-quantized global style representation Fgq , the
vector-quantized local style representation Flq are incorporated
into the semantic representation Fs by a feature fusion module.
We copy the Fgq for t times to match with Fs and Flq , then
sum them up to get the fused representation. The fused repre-
sentation is passed to the decoder D to predict the reconstructed
speech sample x

′
i.

We use the front 15 layer of the pretrained wav2vec 2.0
model of the 300m parameter version 1 as the semantic encoder
SE to extract the semantic feature. The local style encoder
LSE and decoder D are the same as the encoder and decoder
from SoundStream [26], respectively. For the implementation
of global style encoder GSE, we add a global average pooling
layer on top of the SoundStream’s [26] encoder.

1https://huggingface.co/facebook/wav2vec2-xls-r-300m
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3.1.2. Optimized loss function

Similar to [25], the proposed GL-SSD is trained by a self-
supervised manner and the optimized loss function is defined
as:

L = Lrec + Lg
vq + Ll

vq + αLg
com + βLl

com (3)

where the Lrec is the reconstructed loss, Lg
vq and Ll

vq are
the vector-quantization losses of the global codebook and lo-
cal codebook, Lg

com and Ll
com are the commitment losses of

the global encoder and local encoder. α and β are the parame-
ter to balance the different loss sources. The reconstructed loss,
vector-quantization loss and commitment loss can be derived
as:

Lrec = ∥xi − x
′
i∥11 (4)

Lvq =
∑

j

∥sg[zj ]− qj∥22 (5)

Lcom =
∑

j

∥zj − sg[qj ]∥22 (6)

where sg stands for the stop-gradient operator.

3.2. Train the SBD model

The second stage is to train the SBD model based on the
learned hybrid representations of the vector-quantized global
style representation and vector-quantized local style represen-
tation. Specifically, we replace the decoder D in Figure 2
with a sequence classification module, which takes the fused
representations of Fgq , Flq and Fs as input, and output the
boundary/non-boundary predictions of each frame. The se-
quence classification module is composed of a transformer layer
and a fully-connected classification layer. During training, we
fixed the encoders and codebooks, only update the parameters
of the sequence classification module. The training is optimized
with the cross entropy loss.

4. Experimental setup
4.1. Data

We conduct the experiments on the mTEDx dataset [9]. The
mTEDx dataset is an open dataset composed of multilingual
corpus of TED talks and the speech styles are various among
different speakers. We verified the performance of the proposed
method for SBD on four speech subsets across four different
spoken languages of French (Fr), Spanish (Es), Portuguese (Pt)
and Italian (It). We randomly sampled about 10% data from
the training set to expand and diversify the test set because of
the extreme imbalance of the original ratio for training and test
set. All of the audio data are converted to mono and sampled
at a rate of 16 kHz. We label each frame of the audio as sen-
tence boundary/non-boundary according to the start-end time
from the annotations.

4.2. Details of training and inference

For the first stage, we train the disentangled representations of
global-local speech styles by the self-supervised manner using
the training set. For each of the long untrimmed talks, one
snippet of about 20 seconds is randomly sampled from the raw
speech as the sample to be reconstructed. And about 10 other
snippets are sampled from the same speech to extract the global
speech style. The dimension size d of the codebook embedding

is 16 for both of the global and local codebooks. The size of
global codebook is 64 and the size of local codebook is 128.
α and β in the loss function are both set to 0.1. The model is
trained for about 100 epochs with the Adam optimizer [27] and
an initial learning rate of 5× 10−5.

After completing the training of the disentangled represen-
tations, we add a learnable sequence classification module at
the top of the learned hybrid representations to train a sentence
boundary detection model. During training, the data input to the
encoders is processed in the same way as the first stage. At this
stage, we only train the sequence classification module and keep
the bottom encoders and codebooks fixed. The model is trained
for about 20 epochs with the Adam optimizer and the initial
learning rate is 3 × 10−4 which decays with cosine annealing.
We choose the best model according to the performance on the
valid set and evaluate the performance on the test set.

At the inference time, given an audio waveform of a long
untrimmed speech, we predict the confidence of boundary/non-
boundary for each frame with a non-overlapping rolling win-
dow of a fixed length. The fixed length of the rolling window is
20s, the same as training. Different from the training process,
the global style encoder, the local style encoder and the seman-
tic encoder are all input with the same speech snippet which is
to be inferred. In order to obtain a more reliable result, we per-
form the rolling inference with two different offsets and then
average the result of each frame.

4.3. Evaluation

In order to verify the superior performance of the proposed
method for SBD, we compared the proposed method with
the recent mainstream methods including VAD-hybrid and
wav2vec 2.0 based methods. The F1 score is computed to eval-
uate the performance for sentence boundary detection.

Baseline 1: VAD-hybrid. For the VAD-hybrid based
method, the experimental setups are simlar to [21]. The widely-
used tool WebRTC’s VAD 2 is used for silence detection. We
tune the frame length parameter in (10, 20, 30) ms and the ag-
gressiveness parameter in (1, 2, 3), where higher values mean
more aggressive splits. We set the max length parameter to 30
and tune the min length parameter in range of (0,30).

Baseline 2: Wav2vec 2.0. For the wav2vec 2.0 based meth-
ods, we train a sequence frame classifier based on the pretrained
wav2vec 2.0 representations. We add an transformer layer and
a linear layer for sequence frame classification at the top of
the wav2vec 2.0 pretrained model. We keep the parameter of
wav2vec 2.0 fixed and only train the sequence frame classifier.

5. Results and discussion
5.1. Results compared with the baselines

In Table 1, we compare the performance of different methods
for SBD across four different languages on mTEDx dataset. We
compute the f1 score of the frame-wise predictions for sentence
boundary and get the average f1 score across the four tested
languages among different methods.

We observe that the proposed GL-SSD achieves a better
performance than other recent mainstream methods across all
the four tested languages. The proposed GL-SSD outperforms
the VAD-hybrid method and the wav2vec 2.0 based methods by
4.9 points and 2.5 points in average, respectively. We also ob-
serve that the wav2vec 2.0 based method perform better than the

2https://github.com/wiseman/py-webrtcvad

5044



Table 1: Results compared with the baselines

SBD methods Fr Es Pt It Avg

VAD-hybrid 0.733 0.691 0.681 0.662 0.692
Wav2vec 2.0 0.761 0.712 0.701 0.689 0.716

GL-SSD(ours) 0.793 0.732 0.725 0.715 0.741

Table 2: Ablation results for different architectures

configuration Fr Es Avg

SR 0.761 0.712 0.737
SR + GSR 0.781 0.725 0.753
SR + LSR 0.773 0.718 0.746

SR + GSR + LSR (GL-SSD) 0.793 0.732 0.763

VAD-hybrid method, which demonstrate the importance of se-
mantic informationfor SBD. The VAD-hybrid method achieve
a lower f1 score because it only considers the acoustic silence
but does not predict the semantic boundary. Due to the hybrid
representation of the global-local speech styles and semantic in-
formation, the proposed method improves the performance for
SBD by a large margin.

5.2. Ablation study

5.2.1. Respective effects of the global and local style represen-
tation

In order to investigate the respective additional improvement
brought by the disentangled representation of global speech
style and local speech style, we conduct an ablation study on
the dataset of French and Spanish. We compared the results of
four experimental setups as follows:

a). Semantic representation (SR). Keep only the semantic
encoder and train the sequence classification model for SBD
using only the semantic information, which is equal to the
wav2vec 2.0 based method.

b). Semantic representation + Global style representation
(SR+GSR). Incorporate the global speech style representation
into the semantic representation, without the local style repre-
sentation.

c). Semantic representation + Local style representation
(SR+LSR). Incorporate the local speech style representation
into the semantic representation, without the global style rep-
resentation.

d). Semantic representation + Global style representation
+ Local style representation (SR+GSR+LSR). Incorporate both
the representations of the global speech style and the local
speech style into the semantic representation, which is the pro-
posed GL-SSD.

Table 2 shows the results of the ablation study for the four
experimental setups described above. We observe that both of
the global style representation and the local style representa-
tion can bring additional improvement on the base of the se-
mantic representation. The global style representation brings
an improvement of 1.65 points and the local style representa-
tion brings an improvement of 0.9 points. When Combining
the global style representation and the local style representa-
tion, the average improvement increases to 2.6 points. The re-
sults demonstrate that the hybrid representation of global style
representation, the local style representation and the semantic

Table 3: Comparison results of vector-quanzatized representa-
tion and continuous representation

configuration Pt It Avg

continuous representation 0.712 0.701 0.707
vector-quantized representation 0.725 0.715 0.720

representation performs better than each of them respectively.
We also find that the global style representation brings more im-
provement than the local style representation. We consider the
global speech style may probably play a more important role for
sentence boundary detection than the local style to some degree.

In order to further investigate the relationship between the
learned representation and the speech style, we project the
learned embedding of the global codebook into 2D space by
t-distributed stochastic neighbor embedding (TSNE) [28]. We
randomly pick several speech talks of different speakers and ex-
tract their global style codes using the learned encoders and
codebooks. We compute the mean and variance of the pause
lengths according to the annotations. We find that for the speak-
ers who have similar mean and variance of the pause lengths, the
projections of their global style codes also stand close to each
other.

5.2.2. Effects of the vector-quantized representation

We further conduct a experiment to investigate the effect of the
vector-quantized discrete representation compared to the con-
tinuous representation. Specifically, we remove the global code-
book and the local codebook, only keep the global encoder and
the local encoder. The output features of the global encoder and
local encoder are fused directly with the semantic representa-
tion. Other experimental setups are the same as the proposed
GL-SSD. The result is shown in Table 3.

From Table 3, we can obtain that the vector-quantized dis-
crete representation can achieve a better performance compared
to the continuous representation. We consider it is probably be-
cause of the generalization and robustness of the vector quanti-
zation for the self-reconstructed training. Similar conclusion is
obtained in [29] which improves both robustness and general-
ization of vision models by the discrete adversarial training.

6. Conclusions
In this paper, we propose a robust method for sentence bound-
ary detection in the speech stream by incorporating the disen-
tangled representations of global speech style and local speech
style into the semantic representation. Our method first adopts
a self-supervised approach to disentangle the global and local
speech styles by vector quantization from the raw speech. Then
we use the hybrid representations of the learned disentangled
global-local style representations and the semantic representa-
tion to train a sequence classification model for robust sentence
boundary detection. The experimental results demonstrate the
superior performance of the proposed method. In the ablation
study, we further verified the respective improvements brought
by the disentangled global style representation and the local
style representation. We also verified the effectiveness of the
vector-quantized discrete representation compared to the con-
tinuous representation. The proposed GL-SSD improves the
performance of SBD by a large margin in different languages
compared to the mainstream methods.
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and M. R. Costa-jussà, “End-to-end speech translation with pre-
trained models and adapters: Upc at iwslt 2021,” in International
Workshop on Spoken Language Translation, 2021.

[24] I. Tsiamas, G. I. Gállego, J. A. R. Fonollosa, and M. R. Costa-
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