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Abstract

Conversion from graphemes to phonemes is an essential com-
ponent in Text-To-Speech systems, and in Chinese, one main
challenge is polyphone disambiguation—to determine the pro-
nunciation of characters with multiple pronunciations. In this
task, the benchmark dataset Chinese Polyphone disambiguation
with Pinyin (CPP) suffers from two main limitations: Firstly,
it contains some wrong labels in contrast to the newest official
dictionary. Secondly, it is imbalanced and hence models learned
from it show a learning bias towards frequently-used pronunci-
ations and polyphones.

In this paper, we refine CPP and release a new dataset
named CVTE-poly, containing 845254 samples, nearly ten
times the size of CPP and is more balanced. Besides, we pro-
pose a comprehensive measurement for polyphone disambigua-
tion task, against the data imbalance problem. Experiments
show that our simple but flexible baseline trained on CVTE-
poly outperforms existing models, which demonstrate the ben-
efit of our dataset.
Index Terms: text-to-speech, Chinese graphemes to phonemes,
polyphone disambiguation, deep learning

1. Introduction
Chinese characters represent the meanings but not the sounds,
and hence in order to pronounce a Chinese character in a Text-
To-Speech (TTS) system, it is essential to use graphemes to
phonemes (G2P) conversion which transforms a character into
‘Pinyin’ (the Romanization system of Chinese). The major
challenge in Chinese G2P conversion is how to disambiguate
the pronunciation of polyphones—characters having different
pronunciations according to their semantic and syntactic usage
within context.

There have been many academic efforts tackling this task.
Park’s work [1] was the first to release a benchmark dataset
called CPP (Chinese Polyphone disambiguation with Pinyin)
with train/dev/test split. Since then, researchers followed this
dataset[2, 3]. However, there are some problems with CPP,
which turn out to be the main restrictions of polyphone disam-
biguation. The problems can be summarized as follow:
• First, the CPP dataset does not strictly obey the 7th edition

of ‘Modern Chinese Dictionary’ (MCD-7) [4], which is the
newest version of the official Chinese dictionary. For exam-
ple, the CPP dataset labels the character ‘会’ in ‘会稽’ (a
city name) as ‘hui4’, but the correct label is ‘kuai4’. Besides,
language develops over time, and some pronunciations also
change. For example, the character ‘骑’ used to have two
pronunciations,‘qi2’ (ride in English) and ‘ji4’ (rider in En-
glish). But MCD-7 only preserves the first one.

• Second, the CPP dataset is not comprehensive. It does not
contain some frequently-used polyphones such as ‘壳’ . Be-
sides, some polyphone has only one pronunciation in the
dataset. Take the character ‘识’ (‘shi2’ or ‘zhi4’) as an ex-
ample. CPP contains 200 sentences regarding with ‘shi2’ but
none for ‘zhi4’. This causes models to have what we called
learning bias and hence are not applicable.

• Third, the data imbalance problem naturally exists in Chi-
nese, including character imbalance and pronunciation im-
balance. This problem results in over-estimation of models.
There are some work addressing on this problem [5, 3, 6].
However, this field needs a more balanced dataset, together
with fairer quantitative metrics against data imbalance.

In this paper, we release a new dataset called CVTE-poly
with a larger corpus and more balanced labels, as well as re-
finements to CPP including wrong label corrections and non-
polyphone removals. Besides, instead of complicated models,
we propose a simple baseline model which can be flexibly as-
sembled with tokenization and Part-Of-Speech (POS) tagging.
The contributions of this work are threefold:
• We improve the benchmark dataset both in quality and in

quantity. CVTE-poly is about ten times the size of CPP, cov-
ering more polyphones and pronunciations. Besides, CVTE-
poly has a more balanced label distribution.

• We propose a more comprehensive measurement to avoid
over-estimation for polyphone disambiguation task.

• Experiments show that with CVTE-poly, simple baseline
models outperform the state-of-the-art, demonstrating the ef-
fectiveness of the new dataset.

All codes and data are available to the public 1.

2. Related Work
Early stage work on Chinese polyphone disambiguation in-
cluded rules-based models [7, 8], which require large amount
of linguistic knowledge and hence are not applicable. Later,
researchers used statistical models like Maximum Entropy [9]
and LSTM [10].

However, there was no public benchmark until Park’s work
[1]. It released the benchmark dataset CPP and proposed g2pM
model base on bi-directional LSTM. In g2pW [2], the authors
used weighted softmax to concentrate on candidate pronunci-
ations. This work also designed a conditional weight layer to
learn auxiliary POS tagging task. Similarly, Zhang’s work [3]
used weighted softmax as well as focal loss to reduce learning
bias. Li’s work [11] uses a mix-pooling mechanism to get richer
semantic representation for a character.

1https://github.com/NewZsh/polyphone
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In this paper, we argue that it is more urgent to pay attention
to learning bias caused by uneven distributions of polyphones
and pronunciations, instead of designing complicated models.
The learning bias is due to two reasons: First, Chinese charac-
ters’ occurrence forms a long-tailed distribution[12, 7]. Take
the character ’行’ as an example. It has two pronunciations
‘xing2’ and ‘hang2’, and has rich meanings is Chinese; Sec-
ond, it is also observed that many polyphonic characters take
one pronunciation as an overwhelming majority [6]. Take char-
acter ‘遂’ as an example. It only pronounces ‘sui2’ in word ‘半
身不遂’ (means hemiplegia in English), and pronounces ’sui4’
in other usages.

There is some work aiming at this problem from different
perspectives, including data augmentation and weighted sam-
pling [5], distant supervision [6] and so on. However, these
work did not come up with a quantitative measurement for
learning bias.

3. CVTE-poly Dataset
In this section, we describe the refinements to CPP dataset, as
well as our dataset CVTE-poly.

3.1. Refinements to CPP

The problematic samples in CPP fall into two categories:
• Wrong labels. For the testing set, we list the 70 wrongly

labelled sentences and the reasons to correct them. For the
training and validation sets, we list the corrections in several
categories.

• Non-polyphone characters. In the testing set, there are 1319
sentences which take a non-polyphone as a target character.
These sentences should be removed. In the training and vali-
dation sets, we also delete such sentences.

The refined CPP dataset contains 69094, 8640 and 8935
sentences for the training, validation and testing sets respec-
tively. From here on, the CPP dataset refers to the refined one.

3.2. CVTE-poly

To collect CVTE-poly, here is our main pipeline:
1 Collect all polyphones from MCD-7. Then, collect all words

containing the polyphones with the pronunciations 2. There
are 612 polyphones in total. Since some of them are rare and
do no form words, the result here is 19755 words, covering
425 polyphones with different pronunciations;

2 Crawl the webpage of each word from ‘Baidu Baike’ 3, pre-
serve the sentences that contain the target word. As some
words do no appear in ‘Baidu Baike’, the result covers 403
polyphones with different pronunciations (see Table 1);

3 Manually confirm some labels. The polyphones in a word
sometimes have more than one pronunciations. For exam-
ple, the character ‘行’ in the word ‘同行’ can be pronounced
as ‘xing2’ (travelling together) or ‘hang2’ (peer). For these
words, we check the sentences and labels manually.

Note that although CPP contain 540 polyphones, just 344 of
them appear with more than one pronunciation, and the samples
with the remaining 196 of them are biased for training. Table 1
also shows that the size of CVTE-poly is nearly ten times that

2This can be done from the electronic copy: https://github.com/CN
Man/XDHYCD7th/blob/master/XDHYCD7th.txt. Note that the up-
loaded version is crowd-sourced and hence has some errors.

3https://baike.baidu.com/, a Chinese wiki-like website.

of CPP. In short, CVTE-poly enriches the size and diversity to
a large extent.

Table 1: Number of sentences and polyphones: CPP v.s. CVTE-
poly

#sentences #poly #poly with >1 labels
1. CPP 86629 540 344
2. CVTE-poly 845254 414 403
1+2 931883 552 429

To study the balance property, we sum up the counts of ma-
jority pronunciation of each polyphone and the counts of mi-
norities. As shown in Table 2, in CPP, the ratio between them is
nearly 10 v.s. 1, while that of CVTE-poly is about 6.66 v.s. 1.

Table 2: Sum of pronunciations counts: majority v.s. minority

#majority #minority ratio
1. CPP 78821 7808 10:1
2. CVTE-poly 817300 122695 6.66:1
1+2 893173 133451 6.69:1

4. Baseline configuration
In this work, we use a very simple model by adding just a fully-
connected layer and softmax layer after the pre-trained language
models, which have been demonstrated to be effective for many
down-stream tasks, including language understanding and gen-
eration. Here, we choose ERNIE [13]. It is pre-trained on large
scale of Chinese corpus and has a larger vocabulary for Chinese
characters compared with BERT [14].

Note that the context is only used to push the characters
through ERNIE and get the context-sensitive embedding of the
polyphone. Denote the embedding as x = xernie, our model
then predicts the label distribution p by

p = softmax(Wx+ b)

in which W, b are the weights and biases of fully-connected
layer.

During training, we use cross entropy to measure the loss
between predicted label distribution p and the one-hot encoding
of the label y:

L = −
C∑

i=1

yi log pi

in which C represents the total number of all pronunciations
collected from all polyphones.

During inference, to restrict a polyphone to choose from
its candidate pronunciations, we use a hard mask m =
[m1, · · · ,mC ] with all zeros except for the candidates to be
ones. Then we determine the final pronunciation according to
the maximum of p � m, in which � represents element-wise
multiplication.

4.1. Tokenization and POS tagging

It has been demonstrated that POS tagging can serve as auxil-
iary supervised learning task to improve the accuracy of poly-
phone disambiguation [2]. In our model, we use it as part of fea-
ture by concatenation. This allows our model to flexibly choose
whether to assemble this feature or not.
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Besides, we observe that tokenization can be a reflection
of the semantic or syntactic usage of a character, and hence af-
fects pronunciations. For example, in the sentence ‘如何/学
会/计算机’ (it means ‘how to master information technology’
in English, we use ‘/’ to represent the tokenization), ‘会’ is pro-
nounced as ‘hui4’, and in the sentence ‘他/是/学/会计/的’ (it
means ‘he studies accounting’), ‘会’ is pronounced as ‘kuai4’.
The different tokenizations affect the pronunciations.

Tokenization can be represented as sequential labelling by
’B’ (Begin of a word), ’M’ (Middle of a word), ’E’ (End of
a word) and ’S’ (Single character as a word). The labelling
can also be transformed into a vector by embeddings. For each
character, we denote its vector for tokenization information as
xtoken. Then we concat it with the character vector before the
final prediction, i.e. x = [xernie;xtoken].

After tokenization, POS tagging assigns a POS tag for each
word. For each character, we assume that its tag inherits from
the word it belongs to. The labelling can also be transformed
into a vector by embeddings. For each character, we denote its
vector for POS tagging information as xpos. Then we concat the
character vector before final prediction x = [xernie;xtoken;xpos].

5. Experiments
5.1. Evaluation protocol

We use CVTE-poly as part of training, and evaluate models on
the CPP testing set.

As shown in Table 1, 196 polyphones appears in CPP
dataset with just one pronunciation. We extract the subset which
does not contain these polyphones from the CPP testing set ,
naming ‘test(small)’. Evaluations conducted on it ensure that
models will not learn the data set bias. We use accuracy av-
eraged in three ways as evaluation metrics (it is similar to but
more comprehensive than f1-score):
• Acc., overall accuracy averaged by cases;
• Acc. avg.p, accuracy averaged by each polyphone. As men-

tioned above, some characters are commonly used, this met-
ric can help us to understand whether the model biases toward
some characters;

• Acc. avg.pp, accuracy averaged by each polyphone and pro-
nunciation. As mentioned above, some polyphones have
dominated pronunciation, this metric can help to check
whether the model biases on some pronunciations.

5.2. Comparison models

To ensure a fair comparison with SOTA models, we choose two
with official released code: g2pW [2] 4 and g2pM [1] 5.

Note that by adopting the multi-task learning framework,
g2pW aims to fit pronunciation and POS tagging together.
Hence, its training requires POS tag labels, which is annotated
manually on the CPP dataset according to its original paper.
When training g2pW on the CPP dataset only, we use its POS
tag labels. When training g2pW on CVTE-poly together with
CPP training set, we use the POS tags predicted by ‘jieba’ (a
python NLP toolkit)6 as labels.

For g2pM, we train it with 100 epochs, with learning rate
1e-5, and 1 hidden layer with hidden size 128 for bi-directional
LSTM. For g2pW, we train it with 100 epochs, with learning

4https://github.com/GitYCC/g2pW/
5https://github.com/kakaobrain/g2pM/
6https://pypi.org/project/jieba/

rate 5e-5 and the weight of loss from POS tagging being 0.1, as
suggested in the original papers.

5.3. Training protocol

The ERNIE-3.0 series have several models with difference sizes
of parameters. Here we choose two models for Chinese to verify
our methods: the base model ‘ERNIE-3.0-base-zh’ (118 million
parameters in total) and the nano model ‘ERNIE-3.0-nano-zh’
(18 million parameters in total) 7. In the nano model, word
embeddings are 312-dimensional, and we set the embeddings
of tokenization and POS tagging to the same shape. In ERNIE-
base, this dimension becomes 768.

For both models, we train 100 epochs with a learning rate of
5e−5, and evaluate on the CPP validation set after every epoch
to choose the best one for testing. For ERNIE-nano, we set the
batch size to be 300, while for ERNIE-base, due to the GPU
memory constraint, we set the batch size to be 64.

We choose ‘jieba’ for tokenization and POS tagging. The
experiments are conducted on a machine with single 12G Titan
Xp GPU using PyTorch.

5.4. Experiment results and analysis

Table 3: Comparison with SOTA and our models (trained only
on CPP, best result is in bold, second best is with underline)

CPP test CPP test(small)

Acc. Acc.
avg.p

Acc.
avg.pp Acc. Acc.

avg.p
Acc.

avg.pp
g2pM .9728 .9652 .9011 .9580 .9453 .8658
g2pW .9897 .9845 .9577 .9841 .9757 .9426

our .9891 .9854 .9596 .9834 .9786 .9461

Table 4: Comparison with SOTA and our models (trained with
CVTE-poly, best result is in bold, second best is with underline)

CPP test CPP test(small)

Acc. Acc.
avg.p

Acc.
avg.pp Acc. Acc.

avg.p
Acc.

avg.pp
g2pM .9780 .9673 .9232 .9621 .9521 .9196
g2pW .9890 .9842 .9664 .9833 .9755 .9545

our .9890 .9837 .9670 .9841 .9755 .9559

Table 3 and 4 summarize the experiment results of SOTA
together with our best results. From the tables, our baseline
models, though very simple, achieve comparable or even higher
performance compared with SOTA. More specifically,
• Compare the performance cross the two tables, all models

trained with CVTE-poly show higher Acc. avg.pp compared
with only trained on CPP. This demonstrates the effective-
ness of CVTE-poly. On the other two metrics, training with
CVTE-poly and only on CPP show comparable performance.
We suggest that the reason is the performance bottleneck of
each model on the CPP testing set has been reached.

• Compare the performance of three models in two tables,
our model shows highest Acc. avg.p and Acc. avg.pp, both
trained only on CPP and with CVTE-poly, though our model
shows a negligible decrease in the overall accuracy compared

7Official repository of ERNIE 3.0: https://paddlenlp.readthedocs.io
/zh/latest/model zoo/transformers/ERNIE/contents.html
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with g2pW. This demonstrates our proposed model is more
balanced.

• Compare the performance tested on test and test(small),
we can see that metrics on the former are all higher than that
on the latter. This verifies that the samples not in test(small)
cause the performance to be over-estimated. It is worth men-
tioning that all models trained with CVTE-poly also show
the same pattern. This indicates that training with samples
with high diversity will not harm the models’ performance
on the highly-biased polyphones, which can also be a strong
evidence for the effectiveness of CVTE-poly.

5.5. Ablation study and analysis

To fully understand whether using tokenization and POS tag-
ging information does make an effect on polyphone disam-
biguation, we conduct an ablation study on only CPP and with
CVTE-poly, with models of different capacities: ERNIE-base
and ERNIE-nano. The results are summarized in tables 5 and
6, which reveal the following interesting findings:

• CVTE-poly shows a substantial help for both improving
accuracy and reducing bias. Comparing across Table 5 and
Table 6, with CVTE-poly, both models show great improve-
ments, especially on the Acc. avg.pp (ERNIE-nano model
improves from 94.80% to 95.88% on the whole testing set,
from 92.95% to 94.42% on the small testing set, and ERNIE-
base model improves from 95.96% to 96.70% and 94.61% to
95.59%).

• Only using tokenization brings no improvement. From the
tables, we can not conclude that only using tokenization em-
beddings brings improvement. Refer to Table 5, ERNIE-nano
trained only with CPP benefits a bit from tokenization. How-
ever, on other cases, model assembled with only tokenization
get even a bit worse. We suggest that the reason is that token-
zation is too correlated to pronunciations and hence cannot
provide extra information for learning.

• POS Tagging helps improving accuracy and reducing
bias. This improvement is obvious especially on smaller lan-
guage model with fewer training samples (see Table 5 for
ERNIE-nano trained only on CPP). Besides, with tokeniza-
tion and POS tagging embeddings together, Acc. avg.pp has
greater promotion than the overall accuracy. This indicates
that utilizing tokenization and POS tagging information can
reduce the bias for polyphone disambiguation task. It is also
worth mentioning that external tools for tokenzition or POS
tagging are not perfect, which indicates the potential of the
models against some noise.

• Models with higher capacity enjoy higher accuracy with
lower bias. From each table, we can see that ERNIE-base
leads ERNIE-nano over all metrics, even when ERNIE-base
trained only on CPP without extra information (see line 5
in Table 5) is comparable with ERNIE-nano trained with
CVTE-poly with both tokenization and POS taggings. Be-
sides, using tokenization and POS tagging in ERNIE-base
just boost the performance a bit, while in ERNIE-nano, the
improvement is much higher. This phenomenon suggests that
large model tends to learn the underlying semantic and syn-
tactic of language.

• Small models also can be effective in applications. With
CVTE-poly, and with tokenzation and POS taggings, we
can see that ERNIE-nano shows comparable performance to
g2pW as well as our best model. Note that since ERNIE-
nano costs nearly 1/3 of the memory of ERNIE-base and en-

joys half of time in inference, it is an applicable choice when
the actual application requires low time or memory cost.

Table 5: Ablation study on models just trained on CPP (best
result is in bold)

CPP test CPP test(small)

Acc. Acc.
avg.p

Acc.
avg.pp Acc. Acc.

avg.p
Acc.

avg.pp

na
no

- .9837 .9758 .9344 .9747 .9620 .9110
+token .9839 .9787 .9350 .9751 .9666 .9117
+POS .9860 .9798 .9455 .9784 .9683 .9260
+token,POS .9864 .9818 .9480 .9789 .9715 .9295

ba
se

- .9887 .9853 .9571 .9831 .9773 .9420
+token .9880 .9845 .9547 .9825 .9765 .9400
+POS .9891 .9847 .9578 .9828 .9776 .9433
+token,POS .9891 .9854 .9596 .9834 .9786 .9461

Table 6: Ablation study on models trained with CVTE-poly (best
result is in bold)

CPP test CPP test(small)

Acc. Acc.
avg.p

Acc.
avg.pp Acc. Acc.

avg.p
Acc.

avg.pp

na
no

- .9867 .9795 .9531 .9796 .9680 .9364
+token .9846 .9811 .9506 .9761 .9703 .9329
+POS .9871 .9819 .9535 .9761 .9703 .9329
+token,POS .9877 .9834 .9588 .9810 .9740 .9442

ba
se

- .9880 .9804 .9581 .9818 .9695 .9434
+token .9871 .9791 .9567 .9810 .9690 .9418
+POS .9891 .9819 .9613 .9820 .9720 .9517
+token,POS .9890 .9837 .9670 .9841 .9755 .9559

6. Conclusions
This work releases a new benchmark ‘CVTE-poly’ for Chinese
polyphone disambiguation . The new dataset is better than CPP
in all perspectives, including size, diversity and balance. Be-
sides, this work proposes a comprehensive measurement to ad-
dress the learning bias problem. Experiments show that simple
baseline models can outperform SOTA models with the help
of CVTE-poly, which demonstrate the effectiveness of our new
dataset. Last but not the least, this work makes detailed com-
parisons with models of different capacity, as well as the effect
of extra syntactic features.

Future work in Chinese polyphone disambiguation contains
the following: (1) predict all polyphones in a sentence at once
by modelling the latent connections among them. For example,
word ‘重创’ can pronounce as ‘zhong4 chuang1’ (means ‘huge
damage’ in English) or ‘chong2 chuang4’ (means ‘re-establish’
in English). In this example, both characters are polyphones,
and there exists a strong reliance between their pronunciations;
(2) ancient Chinese texts have a phenomenon called adulter-
ation, and some idioms or expressions coming from ancient
Chinese are still used today. Hence, the character may have
special pronunciations in these cases.
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