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Abstract
Contrastive self-supervised learning has seen great success in
computer vision while been less investigated in the audio pro-
cessing field, in particular depression detection, a socially criti-
cal challenge. Detecting depression from one’s speech has been
examined via various audio representations, including acous-
tic feature combinations and model-based ones. This paper
proposes to obtain depressive audio representations by depart-
ing speech via reference features from an emotion recognition
model. Furthermore, we propose a reference-enhanced con-
trastive learning (ReCLR) to select fine-grained positive in-
stances and allocate weight to negative instances. The depres-
sion detection results indicate that contrastive learning is effec-
tive in such an audio task. Moreover, our modified ReCLR strat-
egy has outperformed contrastive training without references.1

Index Terms: self-supervised learning, depression detection,
emotion recognition, contrastive learning

1. Introduction
Depression has become one of the most common mental disor-
ders worldwide and a major health challenge to a large popula-
tion, according to World Health Organizations 2. Research on
automatic depression detection has received increasing amount
of attention, mainly including text-based detection from so-
cial media posts and audio-based from conversation recordings.
Compared with social media posts, conversational audio data
with official labels about one’s mental state is much more diffi-
cult to gather, resulting in a greater challenge for speech-based
depression detection. For supervised learning, a large amount
of labeled data is necessary. Therefore, despite the recent suc-
cess of rapidly developing techniques of deep learning, an im-
provement in speech-based automatic depression detection is
not significant.

As a matter of fact, clinical diagnoses for depression are
mainly drawn from conversations, where audio cues provide
crucial clues for a psychiatrist [1]. Audio-based depression de-
tection from conversational data can be a helpful and trustwor-
thy tool to screen depression. However, due to the complexity of
depressive symptoms, robust audio feature extraction remains
an arduous task. Previous speech-based detection work has ex-
perimented on various acoustic features, like prosodic features,
spectral features, and cepstral features (e.g., Mel-Frequency

1† are corresponding authors. This work has been supported
by National Natural Science Foundation of China (No.92048205),
the Key Research and Development Program of Jiangsu Province
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jor Project (2021SHZDZX0102) and Alibaba Innovative Research.
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detail/depression
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Figure 1: Overview of the audio-based depression detection
framework. We pretrain a depression detection model via con-
trastive self-supervised learning. Speech emotion features are
used to better separate positive and negative instances.

Cepstral Coefficients [2]), and more recently, feature combina-
tions like COVAREP [3], which consists of a high-dimensional
feature vector covering common features such as fundamental
frequency and peak slope. Deep learning methods have been
employed to extract high-level feature representations [4, 5].
Despite the tryout on different features and models, the F1 ac-
curacy generated from speech-based depression detection is av-
erage.

Self-supervised learning can be an appropriate solution to
the aforementioned challenges. It defines a proxy task to pre-
train the model and treat the main task as a downstream one.
Such a pretraining process can partially alleviate the data spar-
sity problem, where the model is expected to learn knowledge
from the proxy task instead of being trained from scratch. Con-
trastive learning, on the other hand, can help with the feature ex-
traction as it mainly learns by maximizing agreement between
positive instances while minimizing similarity between negative
ones.

When conducting contrastive learning, how to mine posi-
tive instances becomes the key question. Traditional contrastive
learning methods like SimCLR [6], MoCo [7] treats differently
augmented instances of the same sample as positive and those
from different samples as negative. CoCLR [8] presents more
competitive results by proposing a co-training method to mine
hard positive samples by using other complementary views
of the data. However, previous contrastive learning methods
are independent of the downstream task, nevertheless some in-
stances which could be positive pairs in the downstream task are
classified as negative because they belong to different samples
in the proxy task. Therefore we believe taking the downstream
task into consideration during the process can further maximize
data usage and boost downstream performance. Inspired by the
relations between depression and emotion established in psy-
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chology and psychiatry studies [9, 10], we propose to use emo-
tion as a side view to depression detection.

To our knowledge, this is the first time of utilizing con-
trastive self-supervised learning on pathological audio detec-
tion, in particular, with references for training. The main con-
tributions of this work are:
• We propose Reference-enhanced contrastive learning (Re-

CLR), a novel contrastive learning method which, for the first
time, takes downstream task into consideration while pre-
training.

• We adopt emotion features as references to depression detec-
tion, transferring the knowledge from common speech emo-
tion recognition to depression and investigate the relation be-
tween them.

• We compare ReCLR with other contrastive learning methods
on the depression detection as well as emotion recognition
tasks to demonstrate the superiority of our method.

2. ReCLR Contrastive Self-supervised
Pretraining Method

We aim to pretrain a model to extract one single vector from raw
acoustic features for each segment. The strategy prevents the
too-long-sequence problem caused by concatenating raw fea-
tures. Furthermore, the strategy will have a better performance
if the model can learn to capture depression-related information
from raw features during the pretraining process. Therefore,
we propose ReCLR, a contrastive learning pretrain method en-
hanced by emotion-related features as the reference. The de-
tailed framework is introduced as follows, illustrated in Fig-
ure 2.

Our pretraining method can be separated into two phases.
In the first phase, the model ϕe is trained on an emotion recogni-
tion task. Then in the second phase, we use the trained model ϕe

to extract emotion-related features (reference features) from au-
dio as additional information. Since the essence of contrastive
learning is to better separate positive instances from negative
ones, we believe such a reference-based training scheme is more
effective in instance selection and identifying different emotion-
related information.

2.1. Phase I: Reference Model Training

In order to utilize additional information as reference for a more
effective contrastive training, we first need a model that can ex-
tract such reference features. As mentioned previously, we take
emotion as a complimentary view to depression detection. For
the purpose of extracting emotion-related features in the later
pretraining process, we first need to train an audio-based emo-
tion recognition model ϕe, illustrated in Figure 2 (a).

Such a feature extraction model can be realized via a stan-
dard emotion recognition task, which is usually trained on
emotion dataset involving audio clips of different emotion la-
bels. We utilize a commonly-used convolutional neural network
Cnn10 proposed in PANNs [11] as ϕe and a fully connected to
train our emotion recognition model.

Once trained, we select the model ϕe which has the best
performance on the validation set and use it to extract emotion-
related features as reference features, elaborated in Section 2.2.

2.2. Phase II: Contrastive Learning with References

The core of our pretraining method, contrastive learning with
references, is illustrated in Figure 2 (b). Given a batch of de-

pression conversational data D with N audio clips with the
same size: D = [a1, a2, · · · , aN ]. For each clips we use ϕe

(from Section 2.1) to extract emotion-related features as refer-
ence features [v1, · · · , vN ].

2.2.1. SimCLR: Contrastive Learning without References

First we state one of our baseline method SimCLR, which fol-
lows the learning pattern proposed in SimCLR[6], where refer-
ence information is not used.

We use random masking method (mask by 0) T , to gen-
erate two instances from it, and operate on each sample ai to
construct two instances: a(i)

k , a(i)
q . Following the MoCo-trick,

we use two separate encoders of the same architecture ϕk, ϕq

to extract embeddings of a
(i)
k , a(i)

q : z
(i)
k = ϕk(a

(i)
k ), z

(i)
q =

ϕq(a
(i)
q ), and encoder ϕk is momentum updated.

To formulate, for z(i)q of sample i,

• Positive set: Pi = {z(i)k }
• Negative set: Ni = {z(j)k , j ̸= i}

For sample i, the loss function is:

L(i)
C = − log

1
|Pi|

∑
p∈Pi

esp/τ

∑
p∈Pi

esp +
∑

n∈Ni
esn/τ

, (1)

where 1
|Pi|

∑
p∈Pi

esp/τ = esi/τ in this case and we use co-

sine similarity as score: sj =
z
(i)
q ·z(j)

k

||z(i)q ||·||z(j)
k

||
.

2.2.2. CoCLR: References used to find potential positives

We follow CoCLR[8] and use emotion-related reference infor-
mation to enlarge the positive set.

For sample i and corresponding z
(i)
q , we denote:

• Reference similarity score: [r1, r2, · · · ], where rj is the co-
sine similarity of reference features vi and vj .

• Positive set:

Pi = {z(i)k } ∪ {z(p)k |p ∈ topK(rj)},

where topK means the highest K items. The positive set con-
tains not only its own augmented view, but also K instances
with the highest reference similarity score. That is, we treat
samples which have similar emotions as positives.

• Negative set Ni contains the remaining zk.
The loss function is identical to Equation (1)

2.2.3. ReCLR: Reference-enhanced Loss Function

Different from all previous contrastive learning methods which
mainly focus on positive instances while treat all negative ones
in the same manner, we give each negative instance some
weight to distinguish them from each other. We propose a new
loss function to take reference similarity score rj into consider-
ation:

L(i)
R = − log

1
|Pi|

∑
p∈Pi

esp/τ

∑
p∈Pi

esp/τ +
∑

n∈Ni
esn·(−rn)/τ

, (2)

where τ is the temperature. The equation is different from the
loss function in Equation (1)

And for batch D, the loss function is LR =
∑

i L(i)
R

N
.

We demonstrate the effectiveness of our loss function here:
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Figure 2: Illustration of the two-phase ReCLR and its application on depression detection; (a) trains a model on emotion recognition to
extract emotional audio features. (b) uses emotion features as references to pretrain a depression model by enclosing similar instances
while repelling different ones; (c) use the pretrained model to extract features for the downstream depression detection task.

∇
z
(i)
q

LR/C =
∑

n∈Ni

∇snL(i)

R/C · ∇
z
(i)
q

sn

+
∑

p∈Pi

∇spL(i)

R/C · ∇
z
(i)
q

sp,
(3)

where,

∇
z
(i)
q

sn = z
(n)
k ,∇

z
(i)
q

sp = z
(p)
k ,

and ∇spL(i)

R/C is similar to both L(i)
C and L(i)

R . As a result, we

mainly consider the difference between ∇snL(i)
C and ∇snL(i)

R .
Respectively, the gradients passed to score sn of negative

samples in Ni will be:

∇snL(i)
C =

esn/τ

DC
· 1
τ
,∇snL(i)

R =
esn·(−rn)/τ

DR
· −rn

τ
, (4)

where DC , DR are the denominators of L(i)
C ,L(i)

R in Equa-
tion (1) and Equation (2).

It can be inferred:
• when rn < 0 (−rn > 0), which means sample n has neg-

ative reference similarity score. As a result, the gradients of
two loss function have the same sign, that is, the optimization
goal is to make sn smaller.

• when rn > 0 (−rn < 0), which means sample n has positive
similarity score on reference information. As a result, the
gradients of two loss function have different signs, that is,
our modified function will make sn larger.

Furthermore, we consider when sn stays the same, how |rn|
will affect the norm of gradient, for a larger |rn| means more
significant relevance on reference. For convenience, we con-
sider function f(x) = |x · es·x|, where we let x = −rn ∈
[−1, 1], s = sn ∈ [−1, 1].

∇xf(x) =

{
(1 + x · s)es·x ≥ 0, x ∈ [0, 1]

−(1 + x · s)es·x ≤ 0, x ∈ [−1, 0],
(5)

and under almost no circumstance can ∇xf(x) be 0, which
means the norm of gradient increases as |rn| increases. As a re-
sult, a negative instance which has closer relation with instance
i on reference will receive more attention. Further, among neg-
ative instances which have close sn, those have larger |rn| will
get more updates than ones with smaller |rn|, that is, our modi-
fied loss function gives weight to the negative instances accord-
ing to the reference information, which is different from tra-
ditional contrastive loss functions. Hence, negative instances
which have close similarity score sn but differ in reference
score rn will be distinguished.

Because the reference features extracted by ϕe may contain
noise, our final loss function is a weight sum of LR and LC to
be more robust:

L = λLR + (1− λ)LC . (6)

When λ = 0, the loss function reduces to a CoCLR one. Once
the training process is done, we use ϕq to extract features for
the downstream task.

3. Experiments
In this section, we introduce our datasets and experimental setup
for different stages of our method. Downstream tasks with dif-
ferent methods are reported on MDD. In ablation study, we also
finetune our pretrained model on emotion recognition datasets.

3.1. Dataset

MDD corpus is a large conversational dataset for major depres-
sion disorder detection (MDD) [1]. It consists of 1000 hours of
speech conversation between interviewers and subjects. Among
these data, we pick 588 healthy subjects and 545 depressed sub-
jects. We conduct speaker diarization to select only the subject’s
contents. Then we concatenate all these contents and cut into
several sequential 5-second segments as their utterances. Each
segment is treated as an individual sample during pretraining.
We also use the full dataset to perform depression detection,
detailed in Section 3.2.

CMUMOSEI corpus is a multimodal dataset [12] for sen-
timent analysis and emotion recognition. Following previous
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studies, we neglect sentences with a score of 0 and label them
in a binary manner: label a sentence as 0 if its score is less than
0, otherwise as 1. We use this dataset to train ϕe and choose the
model with the best performance on the validation set.

IEMOCAP corpus is a dyadic conversational dataset [13].
We select utterances labeled as “angry”, “happy”, “excited”,
“sad”, “frustrated”, and “neutral”, where utterances with “ex-
cited” are merged into “happy” class.

3.2. Settings

When pretraining using MDD dataset, we use Cnn10 as ϕq and
train the model using a SGD optimizer with an initial learning
rate of 0.1 and reducing learning rate using a cosine annealing
strategy. We train the model for 200 epochs where each epoch
has 2000 iterations with a batch size of 64. We set K = 5
and τ = 0.1. We perform emotion recognition and depression
detection downstream tasks on IEMOCAP and MDD dataset.
We randomly split them into a training set (70%) and a test
set (30%). For emotion recognition, we use a Cnn10 followed
by a fully connected layer and initialize Cnn10 with the pre-
trained model. For MDD, we use the pretrained Cnn10 to ex-
tract segment-level features and input to LSTM.

3.3. Results

We present results of different methods on MDD dataset in Ta-
ble 1, with 10 times running under different seeds. Clearly,
by using references to select potential positives, CoCLR out-
performs SimCLR. By further utilizing reference information,
ReCLR enhances the performance. A larger λ means assign-
ing heavier weight to emotion-related reference information in
the pretraining stage, which proves to be helpful for depres-
sion detection. The previous methods can be seen as using a
CRNN which consists of a Cnn10 and LSTM with pretrained
and fixed Cnn10. We further train the whole CRNN on MDD
from scratch and show result in Table 1. We also load the Cnn10
with CoCLR-pretrained parameters before training to highlight
the necessity of pretraining process. Note that for all meth-
ods we treat all utterances from the same speaker as positives,
hence even for SimCLR method the positive set P may con-
tain more than one instance. The marginal increase of CoCLR
suggests that SimCLR already considers multiple positive sam-
ples, and they may weaken the top K samples for averaging
1

|Pi|
∑

p∈Pi
esp/τ in Equation (2).

Therefore, we also test performance of not treating differ-
ent segments from the same speaker as positives, with results
presented in Table 2. Results indicate that CoCLR outperforms
SimCLR more significantly under this setting, further demon-
strating that using emotion-related reference information bene-
fits depression detection.

Cnn10 Method F1 macro F1 micro

Fixed

SimCLR 76.56 ± 2.11 76.59 ± 2.11
CoCLR 76.63 ± 1.95 76.65 ± 1.95
ReCLR (λ = 0.2) 77.64 ± 2.58 77.68 ± 2.59
ReCLR (λ = 0.4) 77.90 ± 2.56 77.94 ± 2.56

Tuning Random 69.83 70.59
CoCLR-pretrained 74.7 74.7

Table 1: Results of different methods on MDD

Method F1 macro F1 micro
SimCLR 74.98 ± 2.62 75.00 ± 2.61
CoCLR 75.66 ± 2.63 75.68 ± 2.63
ReCLR (λ = 0.4) 76.60 ± 2.49 76.62 ± 2.50

Table 2: Results of different methods on MDD, where difference
segments from the same speaker are not positives

3.4. Ablation study

Besides depression detection, we also finetune our model to
conduct emotion recognition on IEMOCAP dataset and present
results in Table 3. Generally, CoCLR and ReCLR exhibit simi-
lar improvement, compared with random initialization and Sim-
CLR. However, a higher λ leads to slight performance drop.
This might be due to the fact that binary emotion classification
on MOSEI is not consistent with multiple emotions on IEMO-
CAP.

Method F1 macro F1 micro
Random 52.20 51.40
SimCLR 55.67 ± 0.91 54.85 ± 0.92
CoCLR 57.14 ± 0.88 56.44 ± 0.83
ReCLR (λ = 0.2) 57.10 ± 0.89 56.42 ± 0.85
ReCLR (λ = 0.4) 56.59 ± 0.89 55.92 ± 1.02

Table 3: Results of different methods finetuning on IEMOCAP.

To further explore the effect of λ value, we finetune our
model on MOSEI and present results in Table 4. Here, the abla-
tion results indicate that larger λ should contain more emotion-
related information learned from MOSEI dataset.

Method F1 macro F1 micro
CoCLR 66.65 ± 1.20 69.25 ± 1.23
ReCLR (λ = 0.2) 67.14 ± 1.22 69.58 ± 1.25
ReCLR (λ = 0.4) 67.21 ± 1.11 70.12 ± 0.82

Table 4: Results of different methods finetuning on MOSEI.

4. Conclusion
Due to the limited data problem, depression detection is quite a
challenging task. Hence, we use the self-supervised method to
pretrain the model and treat depression detection as its down-
stream task. This work proposes ReCLR, a reference-enhanced
contrastive learning method of audio representation for depres-
sion detection. We propose a novel reference-enhanced loss
function to conduct contrastive learning in a more fine-grained
manner, with the help of reference information that relates to the
downstream task. We choose emotion-related information as
reference, transferring the knowledge from the emotion recog-
nition dataset to depression and examine the relation between
them. By comparing our method with some baseline contrastive
learning methods, we demonstrate the superiority of our ap-
proach. Ablation studies show that our pretraining also benefits
emotion recognition tasks.
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