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Abstract
Multi-modal emotion recognition (MER) is an emerging re-
search field in human-computer interactions. However, pre-
vious studies have explored several fusion methods to deal
with the asynchronism and the heterogeneity of multimodal
data but they mostly neglect the importance of discrimina-
tive unimodal information resulting in the ignorance of inde-
pendence of uni-modality. Furthermore, the complementarity
among different fusion strategies is seldom taken in consider-
ation. To address these limitations, we propose a modality-
collaborative fusion network (MCFN) consisting of three main
components: a dual attention-based intra-modal learning mod-
ule which is devoted to build the initial embedding spaces,
a modality-collaborative learning approach is to reconcile the
emotional information across modalities, and a two-stage fu-
sion strategy to integrate multimodal features which are im-
proved by a mutual adjustment approach. The proposed frame-
work outperforms the state-of-the-art methods in overall ex-
periments on two well-known public datasets. Our model
will be available at https://github.com/zxiaohen/
Speech-emotion-recognition-MCFN
Index Terms: Multimodal emotion recognition, Intra-modal,
Modality-collaborative

1. Introduction
Emotion plays a crucial role in our daily communication and
emotion recognition finds applications in different domains like
customer services [1], social robots and dialogue systems. In
recent years, multimodal emotion recognition (MER) has at-
tracted increasing attention. Firstly, various deep learning ap-
proaches have been applied to improve the performance of
speech emotion recognition. Deep learning approaches such
as bidirectional LSTMs in combination with attention mecha-
nism [2], and time-delay neural networks (TDNN) [3] are ap-
plied in order to capture contextual information. In addition,
a lightweight 1D CNN SER system [4], which utilizes the di-
lated convolution layers, shows its performance in capturing the
local low-level features as the computational speed increases.
However, when the emotion expressed through speech becomes
ambiguous, the lexical content may provide complementary in-
formation that can address the ambiguity. As for text encoder
approaches, Word2Vec and Glove [5] are two widely used un-
supervised word embeddings, however, they have limitations
in capturing contextual information, our study uses a finetuned
RoBERTa model [6] for text emotion recognition which are
more capable to capture the context with the position embed-
dings and multi-layer transformers. Furthermore, one of the
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challenges is to determine the most relevant acoustic and se-
mantic emotion features. Therefore, a temporal and channel-
wise dual attention structure may be more appropriate to ad-
dress this issue.

The early research focused on modality-independent fu-
sion which combined the acoustic and semantic features di-
rectly. Many researchers [7, 8] have also explored modality-
independent late fusion which is easier to handle. However,
the correlation between features and emotionally-salient words
was rarely considered. To solve these drawbacks, the modality-
dependent approaches were investigated, many researchers have
introduced the attention mechanism between words and frames
to achieve an alignment considering the utterance-level global
influence [9], and various cross-modal interaction structures
have been proposed [10, 11] with an attention module to learn
representations from unaligned multimodal sources. However,
most of the existing works only focus on either feature fusion
which can effectively exploit the covariations between features
from different modalities, or decision fusion, which shows the
robustness of capturing an optimal combination of two modal-
ities and errors from multiple models are dealt with indepen-
dently. This observation motivates us to design a hybrid fusion
method. In this paper, we propose a Modality-Collaborative
Fusion Network (MCFN), the main contributions can be sum-
marized as follows:

• We introduce an Intra-modal Learning Module to ensure the
independence of the single modality and at the extraction of
the emotion-related features in both the channel and temporal
directions by the use of a dual attention mechanism.

• We design a Modality Collaborative Learning Module to ob-
tain semantic information from other modalities considering
the cross-modal alignment and interaction.

• We introduce a two-stage fusion approach with a well-
designed mutual adjustment to merge progressively emo-
tional information from intra-/inter-modality.

2. Proposed Multimodal Framework
Fig.1 shows the block diagram of the proposed two-stage fu-
sion network including intra-modal and modality-collaborative
learning. Our model consists of three components: (a) ILM
(Intra-modal Learning Module) where a dual attention block is
integrated, (b) MCLM (Modality-Collaborative Learning Mod-
ule) including a multi-head co-attention alignment and a cross-
modal interaction, followed with a mutual adjustment and
(c) the emotion classifier where we combine the information
of both modalities effectively and get final predictions by a
decision-level fusion. The following subsections provide a de-
scription of the structures in this framework.
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Figure 1: Overall architecture of proposed MCFN. We compute intra-modal learning (ILM) and modality-collaborative learning
(MCLM) for two modalities, and merge the cross-modal features with original unimodal features in a hierarchical way. TAB rep-
resents temporal-wise attention branch while CAB represents channel-wise attention branch.

2.1. Intra-modal Learning Module

In this work, we utilize the frame-level and word-level features
as input. The raw acoustic input is represented as Xs while the
semantic input is Xt. We leverage the spectrogram augmen-
tation technique by applying random time-frequency masks to
spectrograms as described in [12]. Then, considering dynamic
information about transitions between frames, we use the first
and second derivatives of log-MFB features, which are called
delta and delta-delta coefficients [13]. Then a ligntweight 1D
dilated convolutional network is performed including three up-
grade feature learning blocks (UFLB) as illustrated in Fig.1, a
combination of one dilated convolutional layer, one batch nor-
malization (BN) layer and one Leaky-ReLU layer, and a skip
connection residual block is applied to integrate the current in-
formation with the previous one. We extract the linguistic rep-
resentations via pre-trained and finetuned RoBERTa model fol-
lowed by a fully-connected layer. Finally the acoustic embed-
ding from intra-modal learning is represented as Os ∈ Rq×n,
Os = {Os1 , Os2 ...Osn} while the textual embedding can be
represented as Ot ∈ Rd×m, Ot = {Ot1 , Ot2 ...Otm} where
n,m denotes the length of the sequence, q, d = 256 represent
the dimensionality of embedding spaces.

For each modality, we learn high-quality latent represen-
tations by encoding followed by a temporal and channel-wise
dual attention to capture features dependencies in the tempo-
ral and channel dimensions respectively. As illustrated in Fig.1,
we design two types of attention modules to draw global context
over local features, thus obtaining better feature representations
for word-level prediction. Two branches are designed as TAB
(Temporal-wise Attention Branch) which upgrades the feature
along time-series and encodes the contextual information into
local features in form of a weighted sum, and CAB (Channel-
wise Attention Branch) which emphasizes interdependent chan-
nel maps by differentiate the importance of different channels.
Os and Ot go into the dual attention independently and we ob-
tain respectively S and T .

As shown in Fig.1, firstly we feed the feature embedding
Ot into convolution layers to generate two feature maps T1, T2

respectively and reshape them, then we perform a matrix multi-
plication and a softmax layer to calculate the temporal attention
map Ft = (ti,j)m×m ∈ Rm×m. We feed Ot into a convo-
lution layer to generate a new feature map T3 and perform a

matrix multiplication with Ft (Eq.(1)). Finally, we perform an
element-wise sum operation to obtain the final output. Sim-
ilar to TAB, we build a channel attention branch by directly
calculating the channel attention map Fc = (ci,j)256×256 ∈
R256×256 (Eq.(2)), and we aggregate the features from TAB and
CAB to obtain T = Tt+Tc ∈ Rd×m and S = St+Sc ∈ Rq×n.

tj,i =
exp(T1i · T2j)∑N
t=1 exp(T1i · T2j)

, Tt = T +
m∑

i=1

ti,jT3 (1)

cj,i =
exp(Ti · Tj)∑N
t=1 exp(Ti · Tj)

, Tc = T +
256∑

i=1

ci,jT (2)

where tj,i measures the ith temporal state’s impact on the jth

and ci,j measures the ith channel’s imapact on the jth channel.

2.2. Modality-Collaborative Learning Module

To increase more discrimination in emotional cues across
modalities, the alignment between speech frames and text
words after the dual attention is completely learned from the
co-attention mechanism. Given an encoded speech embedding
S and text embedding T , the high-level acoustic feature can
be learned by a multi-head co-attention mechanism where the
alignment score between the ith speech frame and the jth word
is calculated as Eq.(3):

ai,j = tanh(UT si + V T tj + b) (3)
where U, V and b are trainable parameters. Here, We use the
text T as the query because text modality has better robustness
because of its rich semantic information compared with audio
modality and is less likely to be disturbed by noise interference.

Then we can obtain the normalized attention weight over
the speech sequence αi,j indicating the alignment score be-
tween the ith frame and the jth word, and the aligned speech
feature S̃ = {s̃j}nj=1 is projected into the latent space grounded
on the text features, in order to facilitate the interpretability of
symbols, the text feature after alignment is denoted as T̃ = T :

αi,j =
exp(aj,i)∑N
t=1 exp(aj,t)

, s̃j =
∑

i

αi,jsi (4)

Besides, we design a cross-modality interaction block to learn
the interaction between two modalities. We obtain two ex-
citement weight matrices of corresponding features. Then, the
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aligned embeddings are calibrated to obtain Sc and T c.

Sc = S̃ + S̃ ⊙ Es, Es = σ(Ws · T̃ ) (5)

T c = T̃ + T̃ ⊙ Et, Et = σ(Wt · S̃) (6)

where σ(·) denotes the sigmoid function, and Ws,Wt represent
linear projection operators.

As for the feature-level local fusion, to ensure that the
MCLM can learn from the uni-modality without losing too
much original information, instead of directly concatenating the
features of the two modalities, we introduce a mutual adjust-
ment specifically a mean squared error function to constrain
the difference between intra-modal representations (S, T ) and
inter-modal representations (Sc, T c), as shown in Eq.(7). Af-
terwards, to consider more original information and achieve a
non-redundancy, we feed them into a adjustment function which
can be of any form that keeps the shape of representation un-
changed. We adopt a simple addition and finally obtain two
ajusted representations Sf and T f .

Lad =
1

N

N∑

n

(S − Sc)2 +
1

N

N∑

n

(T − T c)2 (7)

where N is the number of samples.

2.3. Emotion classifier

In our work, besides of the feature-level fusion, a decision-level
fusion is applied to complementarily utilize the reliability mea-
sures of speech and text information. The final prediction is
calculated as the summation of probabilities from two adjusted
intra-modal classifiers and a bimodal classifier:

P (yi|x) = αP (ys
i |xs) + βP (yt

i |xt) + γP (yst
i |xst) (8)

where P represents the probability with x representing the
given sequences, yi as the i-th emotional label, and α, β, γ are
hyperparameters which satisfy the constraints:

α+ β + γ = 1, 0 ≤ α, β, γ ≤ 1 (9)
We adopt a cross-entropy loss as classification loss (Eq.(10)) for
each classifier to optimize the latent representations.

Lm
cl = − 1

N

N∑

n=1

C∑

i=1

yi · logP (ym
i |xm),m ∈ {s, t, st} (10)

where C is the total number of classes, yi is annotated emo-
tional label. The total loss L can be expressed as Eq.(11):

L =
∑

m∈{s,t,st}
λmLm

cl + ωLad (11)

where λ is the weighting factor and ω is the hyperparameter to
balance the two losses. The joint loss function ensures that the
model focuses on various modalities and shows its robustness
in learning the joint representation across modalities

3. Experiments
3.1. Datasets

In this section, we conduct several experiments to evaluate the
effectiveness of our proposed method and compare it with state-
of-the-art baselines on two benchmark datasets:

• IEMOCAP [14] dataset contains approximately 12 hours
of dyadic emotional improvised and scripted conversations
(10039 utterances). The labelling of each utterance was de-
termined by 3 annotators as the following categorical la-
bels: anger, happiness, sadness, neutral,excitement, frustra-
tion, fear, surprise. We consider the first four labels, in which

the excitement category is merged into happiness and the 5-
fold leave-one-session-out (LOSO) strategy is adopted.

• MELD [15] is a large-scale multi-party conversational
dataset which contains more than 13,000 utterances and each
utterance is annotated with one of the following labels: anger,
joy, sadness, neutral, disgust, fear and surprise.

3.2. Implementation Details and Metric

Our implementation is based on the PyTorch framework. The
raw audio signal is transformed into short frames with 25 ms
window width and 10 ms frameshift. The dilation rate is set to
2. The pre-trained RoBERTa model is used to encode text and
obtain 768-dimensional features. The network is trained using
Adam optimizer with a batch size of 32 and a learning rate of
0.0001, the hidden units for multihead attention is set to 128
and the number of head is set to 4. In our study,we have applied
the grid search method for the hyperparameter finetuning, we
try every combination of values and calculate the performance
metrics using a 5-fold cross-validation scheme. The point of the
grid that maximizes the average value in cross-validation is the
optimal choice.

Since the commonly-used metrics on the two databases are
different, we select the universal metrics on each dataset for
measurement to conduct a comparison with the literature, most
of the previous works have chosen WA and UA for IEMOCAP
considering the test sets are slightly imbalanced between differ-
ent emotion categories while Acc and F1 for MELD. We utilize
the commonly used metrics on each dataset: weighted accu-
racy (WA) and unweighted accuracy (UA) for the IEMOCAP
dataset, accuracy (Acc) and weighted F1-score (WF1) for the
MELD dataset. As for the baselines, we have selected the state-
of-the-art baseline approaches of the same settings respectively
for the two datasets to compare with the latest works.

3.3. Results and analysis

3.3.1. Overall Classification Performance

We compare our proposed method with some state-of-the-art
baselines (Table 1). It can be observed that our proposed
method achieves more excellent performance than the other
state-of-the-art methods. On the IEMOCAP dataset, the pro-
posed MCFN obtains WA and UA of 76.01% and 77.84%
which are the best scores among the methods listed. Com-
pared with TDNN[3], which fuse audio features with the cor-
responding text at each frame directly using a self-attention
without cross-modal interaction, we focus on the interaction
between two modalities by a cross-attention and design a late
fusion to make up for the inadequacy of the common-used early
fusion combining early and late fusion. In addition, our pro-
posed MCFN outperforms FAF[16] by 3.3% on WA and 5.1%
on UA probably due to the fact that FAF adopted a word-
level alignment fusion ignoring cross-modal interaction, and is
1.7%, 2.5% higher than the current best methods TSIN[10],
KS-TRM[17] which focus on the cross-modal interaction while
many useless relationships are generated and disturb the perfor-
mance of the classifier.

To further prove the performance of MCFN, we then eval-
uate it on the MELD dataset (Table 2). DialogueRNN[18] and
the semi-supervised method[19] lack cross-modal interaction,
while CTNet[20] is a transformer-based model and performs
better than the above method without interaction, it’s also a
typical example of most existing works which pay attention to
cross-modal interaction and fusion but neglect the independence
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of uni-modal features leading to the generation of useless rela-
tionships. More importantly, these interactions often destroy
the features obtained from intra-modal learning, resulting in the
intra-modal characteristics being assimilated by other modali-
ties. To address this issue, we propose the well-designed dual
attention for uni-modality and combine the original unimodal
features and cross-modal features as the final input for the clas-
sifier. Specifically, our proposed framework utilizes the Modal-
ity Collaborative Learning to enhance the recognition perfor-
mance with the Intra-modal Learning and a two-stage fusion to
make full use of information from different levels and different
scales without losing the original information. We can notice
that MCFN outperforms the state-of-the-art baselines although
they mainly focus on the utterance-level features in a contextual
conversation while we utilize the word-level embeddings.

Table 1: Model performance comparison on the IEMOCAP
dataset. The results of 5-fold cross-validation are presented be-
low. “S” : Speech, “T” : Text, “V” : Video.

Methods Modality WA (%) UA(%)

FAF (2018) [16] S+T 72.7 72.7
TSIN (2021) [10] S+T 74.9 76.6
TDNN (2021) [3] S+T 75.5 76.6
KS-TRM (2022) [17] S+T 74.3 75.3
Proposed S+T 76.0 77.8

Table 2: Model performance comparison on the MELD.

Methods Modality Acc (%) WF1(%)

DialogueRNN (2019) [18] S+T+V - 60.3
SSM(2020) [19] S+T+V - 57.1
CTNet (2021) [20] S+T 60.8 62.0
Proposed S+T 64.5 62.2

3.3.2. Ablation Studies

In order to explore the contribution of each block, we perform
a series of experiments as listed in Table 3. Firstly, we eval-
uate the effect of modalities and we observe a significant per-
formance drop when we utilize unimodal information as input,
and the semantic features outperform acoustic features signif-
icantly, which verifies that text modality contains much more
semantic information. Besides, from a global perspective, as vi-
sualized in Fig.2, the dual attention and mutual-adjustment are
crucial to ensure the effectiveness of intra-modal learning, also,
the model’s performance is greatly increased by both the intra-
modal learning and the cross-modal interaction, which proves
that our framework achieves a better joint cross-modal embed-
ding space without losing the independence of uni-modality,
except for the MELD dataset, the performance of speech-only
intra-modal learning is not very significant.

3.3.3. Influence of the Hyper-Parameters

We attach three weights coefficients α, β, γ for our three clas-
sifiers with the constraint: α+β+γ = 1 with 0 ≤ α, β, γ ≤ 1
and we obtain α = 0.3, β = 0.3, γ = 0.4 as the fi-
nal weights. Furthermore, we conduct additional experiments
of some representative hyperparameters to show how α, β, γ
jointly affect the classification performance. We notice that the
bi-modal classifier and text-only classifier contribute more to
the final performance. Specifically, we evaluated the proposed

Figure 2: t-SNE visualization of feature distribution. (a)(b)(c)
are the final MCFN without Dual Attention Block, Cross-Modal
Interaction, Mutual-Adjustment, (d) is the final MCFN

Table 3: Ablation study results (%) on the proposed MCFN.
”w/o DAB” means no temporal-channel wise dual-attention is
exploited, ”w/o CMI” means no cross-modal interaction is ap-
plied, ”w/o MA” means the mutual adjustment is removed.

IEMOCAP MELD

Methods WA(%) UA(%) Acc(%) WF1(%)

Speech only 62.1 60.3 48.1 36.7
Text only 68.1 69.1 63.1 59.8
Bimodal 74.5 75.8 63.6 60.5
Ablation
w/o DAB 75.1 75.8 64.2 61.4
w/o CMI 74.8 75.7 63.8 61.1

w/o Intra-modals 74.5 74.9 64.2 62.0
w/o Intra-modalt 73.2 74.1 63.2 61.5

w/o MA 75.5 76.4 63.5 61.1
Proposed 76.0 77.8 64.5 62.2

framework with varied parameters α = [0.1, 0.2, . . . , 0.5],
β = [0.1, 0.2, . . . , 0.5], γ = 1 − α − β while keeping other
parameters as constant, and the results are shown in the right fig-
ure. The highest performance metrics (76% on WA and 77.84%
on UA) are achieved at α = 0.3, β = 0.3, γ = 0.4. Abnor-
mal values of α and β (too large or too small) lead to degraded
performance, indicating that the moderate weight of three clas-
sifiers is beneficial for obtaining the optimal late-fusion score.

Figure 3: Influence of three weights coefficients on IEMOCAP

4. Conclusion
In this paper, we present a multimodal fusion framework for the
emotion recognition. This model integrates the dual attention-
based intra-modal learning with modality-collaborative learn-
ing, and achieves a hierarchical fusion so that both uni-modal
and bi-modal can be interactively optimized without loss of the
original modality-specific information. The experiments on the
benchmark datasets show that our proposed method achieves
competitive performance. Additionally, multimodal research
with the visual information is left as our future work besides
of the acoustic and semantic modalities.
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