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Abstract

Different machines can exhibit diverse frequency patterns
in their emitted sound. This feature has been recently explored
in anomaly sound detection and reached state-of-the-art perfor-
mance. However, existing methods rely on the manual or em-
pirical determination of the frequency filter by observing the
effective frequency range in the training data, which may be
impractical for general application. This paper proposes an
anomalous sound detection method using self-attention-based
frequency pattern analysis and spectral-temporal information
fusion. Our experiments demonstrate that the self-attention
module automatically and adaptively analyses the effective fre-
quencies of a machine sound and enhances that information
in the spectral feature representation. With spectral-temporal
information fusion, the obtained audio feature eventually im-
proves the anomaly detection performance on the DCASE 2020
Challenge Task 2 dataset.
Index Terms: Anomalous sound detection, frequency pattern
analysis, self-attention, feature representation

1. Introduction
Anomalous sound detection (ASD) aims to automatically deter-
mine whether the state of a target object is normal or anomalous
by analyzing the sound emitted by the object [1–7]. ASD is
commonly an unsupervised task due to the infrequent and var-
ied occurrence of anomalous machine sounds in real-world sce-
narios [1, 3, 5–8]. Therefore, only normal sounds are employed
for training to learn the audio feature distribution of normal
sounds. The distance between the test sound and the learned
normal sound distribution is calculated to detect the anomalous
sound having a distance value larger than a threshold [9–11].

As an unsupervised task, ASD learns the feature of normal
sounds to detect anomalous sounds. If the learnt feature also
fits with the anomalous sound, the effectiveness of anomaly de-
tection could be limited. Log-Mel spectrogram has been widely
used as the input feature of the machine sound in ASD methods,
such as [4,12–14]. However, in our previous work [8], we found
that using Log-Mel spectrogram as the audio feature can be in-
effective in distinguishing normal and anomalies, as it might
filter out high-frequency components of anomaly sound, where
distinct features may exist. So spectral-temporal information
fusion (STgram) as the audio feature was proposed in [8], util-
ising both the Log-Mel spectrogram and temporal feature ex-
tracted from machine sounds. Using STgram, the STgram-
MFN method was developed for ASD [8], which achieved state-
of-the-art performance on the Detection and Classification of
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Acoustic Scenes and Events (DCASE) Challenge 2020 Task 2
dataset.

Further investigation indicates that some machine types ex-
hibit prominent characteristics in high frequencies, as evidenced
by analyzing the spectrum of machine sounds [3, 5]. Addition-
ally, the models used for anomaly detection in ASD rely heavily
on higher frequencies to distinguish between normal and ab-
normal sounds [3]. To obtain the audio feature, a high-pass
filter is applied before passing it through the Mel filter in [5],
which ranked top 1 in DCASE 2022 Challenge Task 2. The
results of experiments demonstrate that this pre-processed fea-
ture improved anomaly detection for several machine types, in-
cluding ToyCar, ToyTrain, Gearbox, and Valve. However, this
pre-processing technique [3, 5] relies on the manual or empiri-
cal determination of the high-pass filter by observing the effec-
tive frequency range in the training data. This approach may
be imprecise or time-consuming when implementing ASD in
real-world settings.

In general, various machines can exhibit diverse frequency
patterns in their emitted sound, and normal or abnormal sounds
can also possess distinct frequency patterns. In practical appli-
cations, it is strongly desired for ASD to have the capability to
automatically identify the frequency pattern of a machine sound
and adjust its processing accordingly based on the specific fre-
quency pattern to attain the most optimal results.

In this paper, we propose an ASD method using self-
attention-based frequency pattern analysis (ASD-AFPA) to ex-
tract essential information over frequencies of the machine
sound for improved anomaly detection. It uses STgram-
MFN [8] as the backbone. However, ASD-AFPA differs from
STgram-MFN in that it integrates self-attention mechanism [15]
after the Log-Mel converter to achieve a more effective spec-
tral feature, before performing spectral-temporal information
fusion. To the best of our knowledge, the proposed method is
the first to introduce automatic frequency pattern analysis for
anomalous sound detection. Our experiments demonstrate that
the self-attention module automatically and adaptively analyses
the effective frequencies of a machine sound for ASD and en-
hances that information in the spectral feature representation,
which eventually improves the audio feature obtained from the
spectral-temporal information fusion.

2. Proposed Method
The proposed ASD method using self-attention-based fre-
quency pattern analysis (ASD-AFPA) is illustrated in Figure 1.
The method is built on our previous spectral-temporal infor-
mation fusion-based ASD approach, STgram-MFN [8], but
with spectral features boosted using a multi-head self-attention
mechanism [15]. This enables the method to automatically de-
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Figure 1: Framework of the proposed method with self-attention-based frequency pattern analysis.

tect the frequency pattern of the machine sound and modify its
processing accordingly, thereby achieving the most optimal per-
formance for ASD, as demonstrated by the experiment in Sec-
tion 3. Here, Section 2.1 introduces the STgram-MFN method
as the backbone of the proposed method, and Section 2.2 details
the multi-head self-attention mechanism enabling the frequency
pattern analysis of the machine sound.

2.1. Spectral-Temporal Feature Fusion

For a machine sound as single-channel audio signal x ∈ R1×L

with length L, its Log-Mel spectrogram is XF ∈ RM×N ,
where M denotes the Mel bins of the Log-Mel spectrogram
(i.e., the number of frequency components) and N denotes the
number of time frames. The temporal feature is obtained as

XT = TN(x), (1)

where TN(·) represents TgramNet in [8], and XT ∈ RM×N

has the same dimension with XF . The audio representation
X ∈ R2×M×N through spectral-temporal feature fusion is

X = Concat3D(XF ,XT ), (2)

where Concat3D(·) is a 3-dimensional concatenation opera-
tion.

After the feature concatenation, the audio representation X
will be passed to a self-supervised ID classification for anomaly
detection, including MobileFaceNet [16] (MFN) as the classi-
fier and ArcFace [17] as the loss function, which is conducive
to enhancing inter-class compactness and amplifying intra-class
differences.

Our prior research [8] has shown that combining spectral
and temporal features enhances audio representation for ASD.
The proposed method in this paper retains this structure to pre-
serve this benefit.

2.2. Self-Attention-Based Frequency Pattern Analysis

The proposed method ASD-AFPA applies the multi-head self-
attention (MHSA) mechanism [15] to the Log-Mel spectrogram
XF to automatically analyse the frequency pattern of the ma-
chine sound and adaptively using the obtained information of
effective frequency components for optimised ASD.

First, to prevent information interference between time
frames and allows better analysis of the effective frequency
components from the Log-Mel spectrogram, we segment the
Log-Mel spectrogram over the time dimension as

XF = [XF (1), · · · ,XF (i), · · · ,XF (I)] , (3)

where XF (i) ∈ RM×n, i = 1, 2, · · · , I , and n = N/I . Here,
I is the number of heads of the multi-head self-attention used
for frequency pattern analysis.

The latent parameters Q,K,V ∈ RM×N of the multi-head
self-attention mechanism are obtained by the linear mapping of
the input Log-Mel spectrogram XF , and they are used to cal-
culate the weights of different frequency components. Q,K,V
are calculated as 



Q = XF ·WQ,
K = XF ·WK ,
V = XF ·WV ,

(4)

where WQ,WK ,WV ∈ RN×N are learnable parameter ma-
trices, and their function is to linearly map the input XF .

To achieve the proposed frequency pattern analysis and en-
hance the effective frequency components information in the
audio feature, ASD-AFPA uses a self-attention mechanism for
each part of the segmented input Log-Mel spectrogram to obtain
the frequency patterns, which can be calculated as

A(XF (i)) = softmax

(
Qi ·K⊤

i√
n

)
·Vi, (5)

Di = softmax

(
Qi ·K⊤

i√
n

)
, (6)

where ⊤ represents the transposition of the matrix, and n rep-
resents the dimension of the time frame of XF (i). Qi, Ki,
and Vi are part of the latent parameters Q, K, and V, re-
spectively, corresponding to the spectrogram segment XF (i).
Here, A(XF (i)) denotes the output of the self-attention ap-
plied on XF (i), and Di ∈ RM×M is the frequency pattern
weight matrix (i.e., attention map) of XF (i) learned from the
self-attention mechanism. Note that the values in Di range from
0 to 1 and represent the importance of the frequency compo-
nents in the Log-Mel spectrogram. A larger value indicates the
weighted frequency components containing more effective in-
formation.

The output of MHSA is MHSA(XF ), which is obtained
by passing XF (i)(i = 1, ..., I) through the self-attention
mechanism and connecting A(XF (i)) on the time frame di-
mension, that

MHSA(XF ) = concat(A(XF (1)), · · · , A(XF (I))). (7)

To obtain the important information in frequency compo-
nents while preserving the global information of the Log-Mel
spectrogram, we add the residual to the output of MHSA
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Table 1: Performance on AUC (%) and pAUC (%) for different machine types. STgram-MFN is the backbone of the proposed ASD-
AFPA method. The proposed method only differs from the backbone in adding the multi-head self-attention to adaptively learn the
important frequency patterns for more effective audio feature learning for ASD.

Methods Fan Pump Slider Valve ToyCar ToyConveyor Average

AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC

IDNN [4] 67.71 52.90 73.76 61.07 86.45 67.58 84.09 64.94 78.69 69.22 71.07 59.70 76.96 62.57
MobileNetV2 [13] 80.19 74.40 82.53 76.50 95.27 85.22 88.65 87.98 87.66 85.92 69.71 56.43 84.34 77.74

Glow Aff [14] 74.90 65.30 83.40 73.80 94.60 82.80 91.40 75.00 92.20 84.10 71.50 59.00 85.20 73.90

STgram-MFN [8] (backbone) 94.04 88.97 91.94 81.75 99.55 97.61 99.64 98.44 94.44 87.68 74.57 63.60 92.36 86.34
ASD-AFPA 97.55 93.48 94.46 86.76 99.69 98.40 99.12 95.42 96.15 89.45 76.49 64.21 93.91 87.95

MHSA(XF ). The audio feature X̂F ∈ RM×N with adap-
tively frequency pattern analysis can be calculated as

X̂F = MHSA(XF ) +XF . (8)

Finally, the enhanced audio feature representation X̂ ∈
R2×M×N can be obtained by fusing the adaptively filtered
spectral feature X̂F and the temporal feature XT , that

X̂ = Concat3D(X̂F ,XT ). (9)

We adopt the temporal feature to compensate for the possibly
missed information in the Log-Mel spectrogram, further im-
proving the audio feature representation with the adaptive fre-
quency pattern analysis.

3. Experimental Results
To assess the effectiveness of the proposed method, we per-
formed experiments on the DCASE 2020 Challenge Task 2
dataset [1]. The experimental results demonstrated that in-
corporating self-attention-based frequency pattern analysis into
the existing backbone improved ASD performance compared to
state-of-the-art techniques. Furthermore, the ablation study val-
idated the improvement from the proposed self-attention-based
frequency pattern analysis. We also present illustrative exam-
ples to showcase the important frequency components detected
from machine sounds and the resulting changes in the learned
spectral features, ultimately leading to improved performance
in detecting anomalous sounds.

3.1. Experimental Setup

Dataset: We evaluated our proposed method on the DCASE
2020 Challenge Task 2 dataset [1]. The dataset consists of six
machine types (Fan, Pump, Slider, Valve, ToyCar, and ToyCon-
veyor), each comprising sounds from four different machine
IDs, except for ToyConveyor, which has three different ma-
chine IDs. The development and additional datasets’ training
data is used for training, and the development dataset’s test data
is used for evaluation. We didn’t choose datasets from DCASE
2021 [18] or 2022 [19] since they focus on the domain shift
problem, which is out of the scope of this paper.

Evaluation metrics: The evaluation metrics include the
area under the receiver operating characteristic curve (AUC)
and the partial-AUC (pAUC), following [4, 8, 13, 14], where
pAUC represents the AUC over a low false-positive-rate range
[0, 0.1] [1]. A larger metric value indicates a better distinguish-
ing ability for anomalous sound detection.

Parameter settings: We employ Adam optimizer [20] with
a learning rate of 1 × 10−4 for model training by 200 epochs,
and cosine annealing is applied for learning rate decay. The
margin and scale of the ArcFace loss [17] are empirically set as

1.0 and 30, respectively. The number of heads in Eq. (3) is 6.
The number of the Mel bins (i.e., frequency components) of the
input Log-Mel spectrogram is 128, with 312 time frames.

3.2. Performance Comparison and Ablation Study

The proposed method ASD-AFPA is compared with the state-
of-the-art methods on the DCASE 2020 dataset, IDNN [4], Mo-
bileNetV2 [13], Glow Aff [14], and STgram-MFN [8]. Ta-
ble 1 shows that the proposed ASD-AFPA method significantly
improves the ASD performance for all machine types (except
Valve), with 1.55% improvement on AUC and 1.61% improve-
ment on pAUC, averaged over all the six machine types, com-
pared with STgram-MFN [8] that achieved the best perfor-
mance amongst other methods. Note that the STgram-MFN is
the backbone of the proposed method, and the only difference
between these two methods is that the backbone does not have
the self-attention-based frequency pattern analysis, but the pro-
posed ASD-AFPA method does. So this result demonstrated
that the proposed method’s adaptive frequency pattern analysis
(AFPA) is effective for ASD.

3.3. Visualisation Analysis

Figure 2 presents illustrative examples to show the impor-
tant frequency components detected from machine sounds and
the resulting changes in the learned spectral features, ulti-
mately leading to improved performance in detecting anoma-
lous sounds. Figure 2 includes examples of machine sound from
different machine individuals of the same machine type (i.e., ID
00 and ID 04 for Fan), as well as the normal and anomaly sound
of the same machine. Column (a) presents the Log-Mel spec-
trograms of the sound signals. Column (b) presents the learnt
frequency patterns, i.e., the mean pooling results of all the learnt
frequency weight matrices from Eq. (6). Column (c) presents
the learnt audio feature with self-attention-based frequency pat-
tern analysis.

From Figure 2, we can see that our method can learn differ-
ent frequency patterns for different operating sound signals, as
demonstrated in the blue boxes in column (b), which can high-
light the important frequency components of the input Log-Mel
spectrograms, by giving large weights to these frequency com-
ponents, where the important frequency components with ef-
fective information can be highlighted, as illustrated in column
(c). In addition, we can see that our proposed method is effec-
tive for all test sound signals, regardless of machine conditions,
including signals from different machines (i.e., ID 00 and ID
04 of machine type Fan) and the machine operating status (i.e.,
normal or abnormal). The results further verify the effective-
ness of the proposed method, and show how our method can
achieve the adaptive frequency pattern analysis, thus obtaining
enhanced audio feature representation to improve the detection
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Figure 2: Illustration of the audio feature with the learnt frequency pattern for machine type Fan with ID 04 and 00, respectively. (a) The
Log-Mel spectrograms of the input audio signals; (b) The learnt frequency patterns, i.e., the learnt weight matrices corresponding to the
input Log-Mel spectrograms of (a); (c) The learnt audio feature with the proposed self-attention-based frequency pattern analysis. For
better understanding, we mark the highlighted important frequency components obtained by the learnt frequency patterns, as shown in
the blue boxes of columns (b) and (c).

(a) STgram-MFN (backbone) [8].

(b) The proposed ASD-AFPA method.
Figure 3: The t-SNE visualisation comparison between the
backbone method STgram-MFN [8] and the proposed ASD-
AFPA for the machine type Fan.

performance.

In addition, we provide the t-SNE visualisation compari-
son between the backbone STgram-MFN [8] and our proposed
ASD-AFPA method for the machine type Fan. As illustrated
in Figure 3, where we can see that our method with the adap-
tive frequency pattern analysis can further improve the distin-
guishing ability for anomalous sound detection. The normal
and anomalous sound of machine ID 00 can be better distin-
guished than the backbone method, which further verifies the
effectiveness of the proposed method.

4. Conclusion

In this paper, we propose an anomalous sound detection method
using self-attention-based frequency pattern analysis. It enables
automatic detection of the individual frequency pattern of a ma-
chine sound and enhances the spectral-temporal feature fusion-
based audio feature representation for anomaly detection. Ex-
periments have shown that our proposed approach outperforms
existing methods and can identify important frequency com-
ponents that contribute to enhanced performance in detecting
anomalous sounds.
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