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Abstract
Emotion classification with EEG responses can be used in
human-computer interaction, security, medical treatment, etc.
Neural responses recorded via EEG can reflect more direct and
objective emotional information than other behavioral signals
(i.e., facial expression...). In most previous studies, only fea-
tures of EEG were used as input for machine learning mod-
els. In this work, we assumed that the emotional features in-
cluded in speech stimuli could assist in emotion recognition
with EEG when the emotion is evoked by the emotional prosody
of speech. An EEG data corpus was collected with specific
speech stimuli, in which emotion was represented with only
speech prosody and without semantic context. A novel EEG-
Prosody CRNN model was proposed to classify four types of
typical emotions. The classification accuracy can achieve at
82.85% when the prosody features of speech were integrated
as input, which outperformed most audio-evoked EEG-based
emotion classification methods.
Index Terms: emotion classification, EEG, emotional prosody,
multi-modal learning

1. Introduction
Emotion comes from people’s interoception. It is a series of
subjective psychological experiences formed from a combina-
tion of people’s feelings, perceptions, and behaviors. It is an
important part of people’s cognitive process [1, 2].

Traditional emotion recognition methods mainly use exter-
nal signals such as facial expressions, body movements, voice
and text [3, 4]. Although these signals are relatively easy to
collect, they also have some obvious defects. These signals
are greatly affected by personal habits and cultural background.
They can also be easily disguised. It has been reported that these
signals are not reliable because they are not specifically linked
with certain emotions. For example, the same face on different
bodies can induce different emotions [5]. Besides, such meth-
ods are not applicable to specific disabled persons [6].

1.1. EEG Emotion Recognition

To avoid the defects above, physiological signals were used
to decode emotions, including respiratory signals, electroen-
cephalogram (EEG), electrocardiogram (ECG), eye movement,
etc. These physiological signals can reflect the emotional state
of the subjects more objectively [7]. Researchers have reported
that EEG-based emotion recognition is more stable, reliable,
and accurate than other physiological signals through a large
amount of literature research since the EEG signals were col-
lected from the central nervous system of the brain that repre-
sents the emotion processing directly and objectively [8].

However, EEG-based emotion recognition also has some
setbacks. Firstly, the accuracy of emotion classification still
needs to be improved from the current SOTA models on four-
category classification [3]. Previous studies on audio-evoked
EEG emotion recognition generally used machine learning
methods like SVM, kNN, or MLP, and the performance is lim-
ited [9, 10]. Secondly, cross-subject emotion recognition be-
comes a difficult task due to the diversity of people’s responses
and emotional states under certain conditions [11]. Lastly,
rich emotional information in visual and audio stimuli are not
fully exploited and used in the EEG-based emotion recognition,
while other physiological signals such as ECG or eye movement
have been used to form multi-modal emotion recognition model
with EEG in previous studies [12].

Speech communication is a common application scenario
for emotion recognition, and speech prosody is highly domi-
nated by the speaker’s emotions. However, studies or datasets
on EEG emotion recognition evoked by emotional prosody of
speech are quite rare. Meanwhile, a lot of speech emotion
databases are not fully exploited in EEG experiments [13]. In
daily conversations, only auditory stimuli are available in many
scenarios. For example, when emotion surveillance is applied to
drivers, the emotion evoked by passengers’ speech could be rec-
ognized with the help of speech prosody. Hence, it was worth
including speech prosody in EEG studies.

1.2. Emotional Prosody

Emotional prosody is a non-verbal expression of emotion,
which has important voice clues and unique acoustic features,
including fluctuations in pitch, loudness, speech rate, etc. [14].
These features can reflect certain emotion encoded in speech.
Studies have found significant differences in the statistical mag-
nitudes of pitch (i.e., mean value, standard deviation, etc.), loud-
ness, and other features across different emotional speeches
in English [15]. In 1996, Banse and Scherer proposed that
the speech of each emotion category has its unique “acoustic
profile” [16]. Since emotion evoked by speech could result
from both the speech semantic and the emotional prosody, re-
searchers have created meaningless sentences to enable closer
studies of single emotional prosody. The sentences produced
conform to the general rules of natural languages in syntactic
structure and pronunciation, but they don’t have any semantic
content. Scherer et al. used phonemes in different languages to
form non-existent words, mixed them with ordinary sentences,
and recorded speech spoken by actors with emotional speech
prosody. Subjects’ emotion was successfully induced without
the interference of semantic context [17].

Recently, a similar emotional prosody speech corpus based
on Mandarin Chinese was released [18]. The method of con-
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structing meaningless sentences in Chinese is slightly differ-
ent from that in English [19]. Researchers replace the content
words in sentences with words that have no meaning or are irrel-
evant to the content of sentences while retaining function words
to ensure that meaningless sentences still conform to Chinese
grammar [20]. The recording of the emotional prosody stimuli
using meaningless sentences was produced by native speakers
(emotion encoders) who have experience in broadcasting. Then
the recorded speeches were verified by a group of listeners who
don’t know the emotion labels of these speeches. According
to the listeners’ feedback, speech stimuli with high emotional
intensity are selected for a data set [7, 21].

1.3. Multi-modal Emotion Recognition

Researchers have been trying to use emotion cues from different
modalities to achieve higher performances on emotion recogni-
tion tasks. Visual and audio multi-modal emotion recognition
is mostly adopted, due to the plenty of databases and well-
performed models. There are many open audio-visual emo-
tion databases available, such as IEMOCAP [22]. Audio and
text are also used together with visual information to achieve
better results. As for physiological signals, the DEAP dataset
(A Database for Emotion Analysis using Physiological Signals)
recorded EEG, electrooculogram (EOG), and many other sig-
nals collected from the human body with subjects’ annotation
scores of valance and arousal. Multi-modal emotion recogni-
tion using physiological signals can reach an accuracy higher
than 90% on binary classification related to valance and arousal
[23]. Based on the good performances of existing multi-modal
emotion recognition models, it is reasonable to assume that
the speech prosody included can enhance emotion classification
performance in EEG experiments.

2. Material and Methods
2.1. Data set

A new EEG emotion data set was built by using speech se-
lected from the Mandarin Chinese Speech Emotional Stimula-
tion Database (MCAESD) [18]. This speech corpus consists of
different emotion speech of Chinese meaningless sentences. Six
students (3 female) with broadcasting experience encoded emo-
tions and recorded audio stimuli according to sentence patterns
(declarative sentences or interrogative sentences) and emotional
intensity (strong or normal) for each of the sentences. The data
set includes the annotation results of 40 subjects (decoders) of
each speech stimulus, and statistical results of different emo-
tional speech stimuli are provided.

The speech stimuli contain rich material of four commonly
used emotion types in classification [18], neutral, sad, fear, and
happy. Its validation accuracy by listeners also meets the re-
quirements for EEG emotional stimuli. Thus, stimuli of these
emotion types are selected for the emotion prosody dataset.

Speech stimuli evoking EEG responses were selected from
MCAESD according to the criteria as follows: First, declara-
tive sentences are preferred instead of interrogative sentences to
avoid prosodic differences of the same emotion speech. Second,
the speech stimuli with higher accuracy in the listeners’ anno-
tation are preferred. As the duration of each emotional speech
stimulus is too short to induce stable emotional EEG responses,
every piece of speech stimuli was concatenated with several se-
lected speech sentences for each of the four selected emotion
types. Each piece lasts about 1 minute, and each emotion con-
sists of 5 pieces. The speech stimuli are all with 16-bit quanti-

Figure 1: Protocol of EEG data recording experiment.

zation and a 44.1 kHz sampling rate.
The EEG data recording experiment included a total of 12

healthy participants (7 female) aged from 19 to 27 years. All
subjects are native speakers of Mandarin Chinese, right-handed
with normal audiometric hearing, normal or corrected vision,
and have no experience of brain injury or cognitive impairment.
During the EEG experiment, the picture of a black background
with a calibration cross in the centre is presented as a controlled
visual stimulus. 12 subjects responded well to the stimuli mate-
rials after completing the experiment. Their emotion annotation
results show that the stimulus materials can induce expected
emotional states.

Our EEG experiment protocol is shown in Figure 1. After
being informed of the purpose, protocol, and precautions of the
experiment, subjects were asked to respond to audio stimuli in
20 subsequent sessions. In each session, there is a 5 s hint be-
fore each clip, then a 1-minute emotional prosody clip would
be played, after the clip subjects were given at least 15 s for
self-assessment by choosing among four emotion types.

The newly built EEG dataset was validated by high average
accuracies of subjects’ emotional annotations in the EEG ex-
periment. The EEG emotional dataset and emotional prosody
stimuli that induced certain emotion states in experiment con-
tain rich emotional information that can be decoded through
computational method.

EEG responses are recoded using 64-channel electrode cap
with 10/20 layout and NeuroScan Acquire 4.3 software. In or-
der to eliminate the influence of EOG artifacts (such as blink-
ing and scanning) on scalp electrodes, two additional pairs of
bipolar electrodes are used to record vertical electrooculogram
(VEOG) and horizontal electrooculogram (HEOG).

Recorded EEG data is pre-processed using EEGLAB tool-
box. The recorded EEG data file is cut into segments at same
time length and synchronized with audio signals. The sample
rate of EEG data was kept at 500Hz in raw and processed sig-
nals. Previous work shows that emotional information in EEG
signals is mainly distributed in a frequency band from 1 to
50Hz, thus EEG signal passes through a 1-75Hz band-pass fil-
ter to remove artifacts. For EEG data of each trial, independent
component analysis (ICA) is performed to remove the artifact
components and eventually acquire pre-processed signal. To-
tally, there are about 240 minutes of EEG data, with the record-
ing of four emotions evenly divided (60-min each).

2.2. Feature Extraction

2.2.1. EEG feature extraction

Many EEG emotional features have been developed in pre-
vious work concerning EEG emotion recognition, including
time domain features, frequency domain features, and time fre-
quency domain features [23]. The spectral power of EEG sig-
nal has been shown highly correlated with emotions, in which
energy spectrum and differential entropy (DE) are commonly
used EEG emotion features, and have been proven effective on
SEED-IV and other EEG data sets [24, 25]. The Short Time
Fourier Transform (STFT) with a 2-second time window and no
overlapping Hanning window was used to extract the DE fea-
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Figure 2: The system diagram of the proposed method.

ture in the five frequency bands: Delta (1-4Hz), Theta (4-8Hz),
Alpha (8-14Hz), Beta (14-31Hz), Gamma (31-50Hz). Differ-
ential entropy features of each frequency band are calculated
respectively.

Differential entropy was first applied to EEG fatigue detec-
tion, and Duan et al. applied it to EEG emotion recognition,
achieving higher accuracy than power spectral density features
[25]. It has been validated in recognizing emotions under a sim-
ilar window length in previous experiments [24, 25, 26]. For a
fixed-length EEG signal sequence, its differential entropy in the
selected frequency band equals the logarithm of the power spec-
tral density in that frequency band. Extracted EEG features are
smoothed by calculating the mean with its nearest features on
temporal dimension within a short time window.

Another method of extracting EEG features adopted in the
following experiments is preserving time domain information
by using EEG time sequences as input of deep learning models.
This can be recognized as a simplified spatial-temporal feature
of EEG data.

All two types of EEG input were examined in the experi-
ment, in the following paragraphs spatial-temporal input refers
to EEG time sequence, while spatial-spectral input refers to
handcraft EEG features such as DE.

2.2.2. Prosodic feature extraction

In research on emotional prosody, many prosodic features re-
lated to emotion have been mentioned and examined, including
fundamental frequency, loudness, etc. Also, many sets of fea-
tures have been developed to solve the problem of speech emo-
tion recognition in ordinary speech with semantic meanings.
These feature sets include eGeMAPS (The extended Geneva
Minimalistic Acoustic Parameter Set), PyAudio, IS13, and so
on [27, 28, 29]. Based on existing feature sets, fundamental
frequency, loudness, spectral flatness, spectral centroid, zero
crossing rate, and MFCCs are selected as emotional prosodic
features. These features also emerge frequently in previous
studies on emotional prosody [15, 20].

2.3. Multi-modal Emotion Classification

The proposed multi-modal emotion recognition model is an
end-to-end model. Both the EEG spatial-temporal signals di-
rectly extracted from pre-processed EEG data of every subject
and the 6 down-sampled features of emotional prosody were
provided as the input. Features of emotional prosody stimuli
are extracted and down-sampled to match the sample rate of
EEG features so that feature fusion between two modalities can
be performed.

The model consists of a spatial-temporal EEG stream and a
spectral features stream of emotional prosody, which are inde-
pendent yet with similar network structures. As shown in Figure

Figure 3: The architecture of multi-modal EEG-Prosody
CRNN model.

3, the spatial-temporal EEG stream contains two 1-Dimension
convolutional layers (kernel size: 3) followed by two dense lay-
ers. The spectral features stream contains two 1-D convolu-
tional layers (kernel size: 3), a Bidirectional LSTM layer in
the middle, and dense layers same as the EEG stream. In the
end, the EEG spatial-temporal stream and emotional prosody
features are fused by concatenating together along the tempo-
ral axis and classified into four emotion categories through an
output layer with a softmax activation function.

3. Experiments and Results
3.1. Experiments

Experiments are based on the data set composed of emotion
prosody stimuli and EEG data collected in experiments in Sec-
tion 2.1.

The EEG-Prosody CRNN model and baseline deep learn-
ing models were trained and tested on 2 NVIDIA RTX 3090
GPUs. The Adam optimization is used to minimize the cate-
gorical cross entropy loss function and the learning rate is set
to 0.0001. We use 5-fold cross validation (train test split ratio
is 4:1) for 20 trials of each subject, which means EEG data and
corresponding emotion prosody features of 16 trials (4 of each
emotion category) are used for training, while the rest 4 trials
from all 4 emotional categories formed the test data set.

3.2. Results and Discussions

We compare our model to baseline models, including SVM,
CNN, and similar models, using differential entropy features
(spatial-spectral feature) of EEG on our data set.

As Table 1, the CRNN model not only outperforms EEG
single modality but also outperforms SVM, the most used
method in previous literature on audio-evoked EEG emotion
recognition. The model proposed in this study also outper-
forms machine learning methods in previous studies [9, 10, 30].
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The CRNN model also reached a smaller cross-subject differ-
ence (standard deviation) compared with single modality mod-
els. Due to the dimension difference between prosody and EEG
spectral features, features can’t be concatenated as input of the
SVM model.

Table 1: Accuracy mean% and cross-subject standard error%
of baseline methods and EEG-Prosody CRNN for emotion

recognition models on the data set

Model
Input Spatial-Temporal Spatial-Spectral

EEG-SVM 71.89 (12.95) 57.34 (8.09)
EEG-CNN 79.79 (2.84) 64.24 (11.11)

EEG-Prosody SVM 49.51(3.16) —
EEG-Prosody CRNN 82.85 (3.34) 65.16(4.93)

Ablation experiments have been performed to prove the
necessity of combining EEG and prosody features. Prosody
features achieved low accuracy on the single modality as fea-
tures extracted were selected according to previous literature on
emotional prosody. As Table 2, the combination of EEG and
prosody features outperforms the models with EEG or prosody
features only.

To identify EEG signals’ critical frequency bands, the DE
feature of EEG signals on five frequency bands has been ex-
amined separately and gamma band achieved the highest accu-
racy as input of the SVM model, beta band achieved the sec-
ond best. The result is consistent with previous experiments on
other datasets [24]. As the experiments have validated, EEG
signals of beta and gamma bands have better emotion classifi-
cation ability than delta, theta, and alpha bands.

Ablation experiments also have been performed to identify
critical features in speech prosody. The results showed that the
classification accuracy decreased dramatically once loudness or
spectral flatness was removed from the prosodic features. This
suggest that loudness and spectral flatness were critical features
for the emotional prosody of speech in this experiment.

It is safe to conclude that features of emotional prosody
are effective in enhancing the performance of EEG emotion
recognition and show a statistically significant increase in ac-
curacy according to our test result. Confusion graph in Figure
4 shows that the classification between sad and fear needs to be
improved.

Compared with speech prosody stimuli, audio-visual stim-
uli like movie clips contain complex emotional information in-
cluding visual context, text, speech prosody, and so on. These
can hardly be quantified or structured, and the corresponding
neuro responses are too complicated to decode. With con-
trolled stimuli of emotional prosody in this paper, high-quality
prosodic features have been used for emotion recognition with
EEG signals and achieved good performance.

It is noteworthy that the classification result with EEG
spatial-temporal data as input outperforms EEG spatial-spectral
features input of differential entropy under same CNN model

Table 2: Accuracy mean% and cross-subject standard error%
of single modality and two modality fusion for emotion

recognition models on the data set

Model
Input Spatial-Temporal

EEG-CNN 79.79 (2.84)
Prosody CRNN 67.94

EEG-Prosody CRNN 82.85 (3.34)

Figure 4: The confusion graph of emotion classification result
based on EEG-Prosody CRNN model.

structure. Similarly, EEG spatial-temporal data achieves better
performance than EEG spatial-spectral features in multi-modal
emotion recognition with features of emotional prosody, as it
is better to fuse high-level features of EEG and prosody along
temporal dimension than concatenate spatial dimension of EEG
features and temporal dimension of emotional prosody features.

Commonly used EEG spectral features in emotion recogni-
tion like differential entropy, although proved effective in many
studies, contain signals from many aspects that are hard to be
explained or disentangled [25]. EEG data aligned with prosody
on temporal dimension achieved better results on deep learning
models in the experiment, which indicate the better potential
of EEG spatial-temporal features in EEG emotion recognition
tasks, especially when emotional prosody features are included.

4. Conclusion
In this work, the emotional prosody of speech was used to evoke
emotions in EEG experiments, and a novel framework based on
multi-modal learning was proposed for emotion classification.
Under this framework, a multi-modal CRNN network based on
EEG spatial-temporal data and emotional prosody features was
trained to enhance the performance of EEG emotion classifica-
tion. The experiment results suggest that our method outper-
forms audio-evoked EEG emotion recognition models in previ-
ous studies and provides additional information to cross-subject
emotion recognition tasks.

Theoretically, our framework has the potential to make use
of more emotional information from more modalities like text
to further enhance the performance of emotion classification,
as this information commonly exists in both daily conversa-
tions and emotional stimuli databases. It also correlates with
speech-evoked neural responses. So far, we only take emotional
prosody features into consideration to simplify our experiment.
It is also important to re-examine EEG spectral features, espe-
cially when the features of other modalities are used. In addi-
tion, how to select more effective emotional prosody features to
achieve higher emotion classification accuracy in daily conver-
sation scenarios should be furtherly studied.
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