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Abstract
End-to-end singing voice synthesis (SVS) model VISinger [1]
can achieve better performance than the typical two-stage
model with fewer parameters. However, VISinger has several
problems: text-to-phase problem, the end-to-end model learns
the meaningless mapping of text-to-phase; glitches problem, the
harmonic components corresponding to the periodic signal of
the voiced segment occurs a sudden change with audible arte-
facts; low sampling rate, the sampling rate of 24KHz does not
meet the application needs of high-fidelity generation with the
full-band rate (44.1KHz or higher). In this paper, we propose
VISinger 2 to address these issues by integrating the digital sig-
nal processing (DSP) methods with VISinger. Specifically, in-
spired by recent advances in differentiable digital signal pro-
cessing (DDSP) [2], we incorporate a DSP synthesizer into the
decoder to solve the above issues. The DSP synthesizer consists
of a harmonic synthesizer and a noise synthesizer to generate
periodic and aperiodic signals, respectively, from the latent rep-
resentation z in VISinger. It supervises the posterior encoder
to extract the latent representation without phase information
and avoid the prior encoder modelling text-to-phase mapping.
To avoid glitch artefacts, the HiFiGAN is modified to accept
the waveforms generated by the DSP synthesizer as a condi-
tion to produce the singing voice. Moreover, with the improved
waveform decoder, VISinger 2 manages to generate 44.1kHz
singing audio with richer expression and better quality. Exper-
iments on OpenCpop corpus [3] show that VISinger 2 outper-
forms VISinger, CpopSing and RefineSinger in both subjective
and objective metrics. Our audio samples and source code are
available 1.
Index Terms: Singing voice synthesis, variational autoencoder,
adversarial learning

1. Introduction
Singing voice synthesis (SVS) is a task that generates singing
voices from the given music score and lyrics like human singers.
Deep learning based SVS approaches [4, 5, 6, 7, 8, 9] have at-
tracted tremendous attention in recent years for their extraor-
dinary performances and wide applications. Similar to text-to-
speech (TTS), most of these SVS systems consist of two stages,
the acoustic model first generates low-dimensional spectral rep-
resentations of vocal signals, typically mel-spectrogram, from
the music score and lyrics, and the vocoder subsequently con-
verts these intermediate representations into the singing wave-
form. Although these systems achieve decent performances, the
two-stage models are separately trained, and the human-crafted
intermediate representations, such as the mel-spectrogram, may
limit the expressiveness of the synthesized singing voice.

* Corresponding author.
1https://zhangyongmao.github.io/VISinger2/

We have recently proposed VISinger [1] – an end-to-end
(E2E) learned SVS approach based on VITS [10] to mitigate the
problems of two-stage systems. Specifically, VITS adopts the
structure of CVAE to realize end-to-end speech synthesis. The
posterior encoder extracts the latent representation z from the
linear spectrum, the decoder restores z to the waveform, and the
prior encoder provides a prior constraint for z according to the
text. To better model singing, VISinger provides z with more
accurate frame level prior constraints under the guidance of F0
and provides extra prior information for the duration predictor.
VISinger achieves superior performance over the typical two-
stage systems such as Fastspeech [11] + HiFiGAN [12].

Although VISinger advances the end-to-end SVS, it still
has some drawbacks preventing its further application in real-
world applications. First, the quality artefacts of the two-
stage systems still exist in VISinger. Specifically, the audible
glitches, such as spectral discontinuities and occasional mis-
pronunciations, reduce the naturalness of the generated singing
voice. Second, the sampling rate of the generated singing
voice of VISinger is 24KHz, which does not meet the needs
of high-fidelity (HiFi) applications which desire full-band au-
dio (44.1KHz or higher).

To address these inadequacies, we reanalyzed the architec-
ture and components of the VISinger. The first and most signifi-
cant issue is that the latent representation z extracted by the pos-
terior encoder may contain phase information due to the gradi-
ents passed back by the decoder when modelling the waveform.
This could lead to mispronunciation because it is extremely
challenging to predict the phase from the linguistic input rea-
sonably. Secondly, the HiFiGAN [12] architecture adopted in
VISinger is not well designed for the SVS task. Its absence of
modelling capabilities of rich variations on singing voice may
lead to the glitches problem. Finally, a higher sampling rate
SVS system relies on an improved decoder to provide better
modelling capabilities.

In this paper, we propose VISinger 2, a digital signal pro-
cessing (DSP) synthesizer enhanced end-to-end SVS system for
high-fidelity 44.1KHz singing generation. Specifically, inspired
by recent advances in differentiable digital signal processing
(DDSP) [2], we incorporate a DSP synthesizer into VISinger to
solve the above issues. Specifically, the DSP synthesizer con-
sists of a harmonic synthesizer and a noise synthesizer to gener-
ate periodic and aperiodic signals from the latent representation
z, respectively. The periodic and aperiodic signals are concate-
nated as conditional inputs to HiFiGAN, while the sum of the
two produces a waveform to calculate the loss function. This
design has sufficient advantages. First, both synthesizers need
only amplitude information as input to generate the signals, thus
fully compressing the phase component in z and avoiding the
text-to-phase challenge. Second, the representation of the peri-
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Figure 1: Architecture of VISinger 2. Yellow components are part of the neural network architecture, and grey components are features
or differentiable operations. The short line on the arrow indicates gradient truncation.

odic and aperiodic signal composition provides a strong condi-
tion for HiFi-GAN, substantially enhancing its modeling capa-
bility and allowing it to model a higher sampling rate. Finally,
due to these improved modeling capabilities, the number of pa-
rameters in VISinger 2 can be substantially reduced by about
30% compared to VISinger, further facilitating its use in real-
world applications. Experiments show that VISinger 2 can gen-
erate a high-fidelity singing voice at a 44.1kHz sampling rate,
with better naturalness and fewer glitches than VISinger and the
traditional two-stage system.

We notice that there has been a recent trend to lever-
age the advances of conventional DSP to neural audio gener-
ation [13, 14, 15]. For example, in [15], harmonic signals are
used to improve the stability of GAN and avoid pitch jitters and
U/V errors in singing voice conversion. RefineGAN [13] calcu-
lates the speech template according to the pitch and then gener-
ates waveform according to the speech template. SingGAN [14]
adopts the source excitation with the adaptive feature learning
filters to alleviate the glitch problem. These works usually fo-
cus on the periodic signal because the glitches problem comes
from the defect of the periodic signal. Although motivated by
these works aiming for better generation quality, our approach
has substantial differences in terms of methodology. First, the
above revisions are all made on vocoders, and the whole system
still faces the two-stage mismatch problem. We mitigate this
problem by proposing a fully end-to-end system VISinger 2.
Second, to ensure that the extracted latent representation z in
VISinger 2 contains full amplitude information (periodic and
aperiodic parts), we leverage both periodic and aperiodic sig-
nals generated by the DSP synthesizer in our system design.

2. Method
The overall model architecture of VISinger 2 is shown in Fig. 1.
The proposed model adopts the conditional variational autoen-
coder (CVAE) structure, which includes three parts: a posterior
encoder, a prior encoder, and a decoder, the same as VITS [10]
and VISinger [1]. The posterior encoder extracts the latent
representation z from spectral features, the decoder generates
waveform y from z, and the prior conditional encoder con-
strains the extraction process of z. We will introduce the poste-
rior encoder, decoder, and prior encoder, respectively.
2.1. Posterior Encoder
The posterior encoder is composed of multi-layer 1-D convolu-
tion, which aims to extract the latent representation z from the
mel-spectrum. The last layer produces the mean and variance

of the posterior distribution, and the resampling method is used
to obtain the posterior z.

2.2. Decoder
The decoder generates waveform from the latent representa-
tion z as shown in Fig.1(c). To avoid text-to-phase and glitches
problems, we incorporate a DSP synthesizer into the decoder.
Specifically, we use a harmonic synthesizer and a noise synthe-
sizer to generate periodic and aperiodic parts of the waveform
from the posterior z. The generated waveforms are used as an
auxiliary condition for HiFi-GAN as input to enhance its model-
ing capabilities relieving the glitch problem. Meanwhile, since
the inputs of both two synthesizers contain only amplitude in-
formation, the posterior z will not include phase information
and thus alleviate the text-to-phase problem.

2.2.1. Harmonic Synthesizer
We use the harmonic synthesizer to generate harmonic compo-
nents of audio the same as the harmonic oscillator in DDSP [2].
The harmonic synthesizer uses sin signals to simulate the wave-
form of each formant of the single sound source audio. The
k-th sinusoidal component signal yk generated by the harmonic
synthesizer can be expressed as:

yk(n) = Hk(n)sin(ϕk(n)) (1)

where n represents the time step of the sample sequence, and
Hk is the time-varying amplitude of the k-th sinusoidal compo-
nent. The phase ϕk(n) is obtained by integrating on the sample
sequence:

ϕk(n) = 2π
n∑

m=0

fk(m)

Sr
+ ϕ0,k (2)

where fk represents the frequency of the k-th sinusoidal com-
ponent, Sr represents the sampling rate, and ϕ0,k represents
the initial phase. We can get the phase of the sin signal yk
through an accumulation operation according to the funda-
mental frequency fk. The frequency fk can be calculated by
fk(n) = kf0(n), where f0 is the fundamental frequency. The
time-varying fk and Hk are interpolated from frame-level fea-
tures. We extract the fundamental frequency using Harvest [16]
algorithm.

2.2.2. Noise Synthesizer
In the noise synthesizer, we use inverse short-time Fourier trans-
form (iSTFT) to generate the stochastic components of audio,
similar to the filtered noise in DDSP. The aperiodic components
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are closer to noise, but the energy distribution is uneven in dif-
ferent frequency bands. The stochastic component signal ynoise

generated can be expressed as:
ynoise = iSTFT (N,P ) (3)

where the phase spectrogram P of iSTFT is uniform noise in
domain [−π, π], and the amplitude spectrogram N is predicted
by the network.

2.2.3. Loss Function of Decoder
The DSP waveforms generated by the DSP synthesizer contain
both harmonic and stochastic components. The complete DSP
waveform yDSP and the loss LDSP of the DSP synthesizer are
defined as

yDSP =
K∑

k=0

yk + ynoise (4)

LDSP = λDSP |Mel(yDSP )− Mel(y)|1 (5)

where K represents the number of the sinusoidal component
and Mel represents the process of extracting mel-spectrum from
the waveform.

We use a downsampling network gradually downsamples
the DSP waveforms to the frame-level features. The HiFi-GAN
accepts the posterior z and the intermediate features generated
by the downsampling network as input and generates the final
waveform ŷ. Following HiFi-GAN, the GAN loss for the gen-
erator G is defined as:

LG = Ladv(G) + λfmLfm + λMelLMel (6)

where Ladv is the adversarial loss, Lfm is the feature matching
loss, and LMel is the Mel-Spectrogram loss.

2.2.4. Discriminator
We combine two sets of discriminators to improve the abil-
ity of the discriminator. One set of discriminators is multi-
resolution spectrogram discriminator (MRSD) in UnviNet [17],
and the other is Multi-Period Discriminator (MPD) and Multi-
Scale Discriminator (MSD) in HiFi-GAN [12].

2.3. Prior Encoder
The prior encoder takes the music score as input to provide a
prior constraint for CVAE. As mentioned in Section 2.2, the
posterior z will be used to predict H , N in the decoder, where
H represents the amplitude of the sinusoidal formant and N
represents the amplitude spectrum of aperiodic components.
Both H and N only contain amplitude information but not
phase information, so the posterior z will not contain phase in-
formation accordingly. In this way, the prior encoder will not
model the text-to-phase mapping when predicting the posterior
z based on the music score.

Similar to VISinger [1], the prior encoder adopts the same
structure as Fastspeech [11]. The flow [18] module plays an
important role in VITS [10], but it occupies a large number of
model parameters. For a more practical structure, we calculate
the KL divergence Lkl directly between the prior z and the pos-
terior z without using flow.

We use a separate FastSpeech [11] model to predict the fun-
damental frequency and mel-spectrum to guide the frame-level
prior networks. The loss for the auxiliary feature is defined as:

Laf = |LF0− L̂F0|2+|Mel − M̂el|1 (7)

where L̂F0 is the predicted log-F0, and M̂el is the predicted
mel-spectrogram.

We take the predicted mel-spectrum as the auxiliary feature
for the frame-level prior network in the training and inference
process, so the auxiliary mel-spectrum does not bring a mis-
match in the training and inference process. The frame-level
prior network predicts the prior z with the guide of auxiliary
mel-spectrum to alleviate the text-to-phase problem further. We
prove later in the experiment that VISinger 2 does not rely too
much on this auxiliary mel-spectrum. The harmonic synthe-
sizer accepts the predicted fundamental frequency as input to
guide the generation of periodic signals in the inference pro-
cess, while the ground-truth fundamental frequency is adopted
in the training process.

The duration predictor accepts the music score as input and
adopts the method in XiaoiceSing [8] to simultaneously predict
phoneme duration and note duration. The duration loss is ex-
pressed as:

Ldur = |dphone − d̂phone|2 + |dnote − d̂note|2 (8)

where dphone is the ground truth phoneme duration, d̂phone is
the predicted phoneme duration, while dnote is the ground truth
note duration, and d̂note is the predicted note duration.

2.4. Final Loss
Our final objectives for the proposed model can be expressed
as:

L(G) = LG + Lkl + LDSP + Ldur + Laf (9)

L(D) = Ladv(D) (10)

where LG is the GAN loss for generator G, Lkl is KL diver-
gence between prior z and posterior z, Laf is the loss of the
auxiliary feature, and Ladv(D) is the GAN loss of discrimina-
tor D.

3. Experiments
3.1. Datasets
We evaluate VISinger 2 on the Opencpop [3] dataset, which
consists of 100 popular Mandarin songs (5.2 hours) performed
by a female professional singer. All the audios are recorded at
44.1kHz with 16-bit quantization. Opencpop has a pre-defined
training set and test set: 3,550 segments from 95 songs for train-
ing while 206 segments from 5 songs for the test. We follow
Opencpop’s division of the training and test set.

3.2. Model Configuration
We train the following systems for comparison.
• CpopSing: the two-stage conformer-based SVS model in-

troduced in the Opencpop [3]. In the CpopSing, the Trans-
former blocks in Fastspeech 2 [19] are replaced with Con-
former blocks. The adversarial training method similar to the
sub-frequency adversarial loss in HiFiSinger [20] is used in
the CpopSing.

• VISinger: an end-to-end SVS system based on VITS. The
model configuration is consistent with that in VISinger [1].

• RefineSinger: a two-stage SVS system constructed by Fast-
Speech [11] and RefineGAN [13]. The FFT block in both the
encoder and decoder of Fastspeech are 4 layers. The dura-
tion predictor consists of a 3-layer 1D-convolutional network
and predicts the phoneme-level and note-level duration. Re-
fineGAN, which is designed for high sampling rate scenarios,
adopts pitch-guided architecture to improve the ability of the
generator. A Mel2F0 module introduced in [21] is used to
predict the F0 for RefineGAN. The hidden dimension of Re-
fineGAN is 512, and the data augmentation method proposed
in [13] is not employed for simplicity.
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Table 1: Experimental results in terms of subjective mean opin-
ion score (MOS) and two objective metrics.

Model Sample
Rate

Model
Size (M)

F0
RMSE

Dur
RMSE MOS

Cpopsing 22k 137.5 28.5 6.6 2.97±0.12
VISinger 22k 36.5 33.7 3.6 3.46±0.13
VISinger 2 22k 25.7 26.0 2.8 3.69 ±0.15
RefineSinger 44k 36.0 39.1 2.8 2.85±0.10
VISinger 2 44k 25.7 26.7 2.7 3.81±0.14
Recording 22k - - - 4.22±0.12
Recording 44k - - - 4.32±0.11

• VISinger 2: the proposed end-to-end SVS system, adopt-
ing all the contributions introduced in the paper. Each FFT
blocks in VISinger2 consists of 4-layer FFTs. The hid-
den dim and filter dim of FFT are 192 and 768, respec-
tively. The hidden dimension of HiFi-GAN in the decoder
is 256. The posterior encoder consists of an 8-layer 1D-
convolutional network, and the dimension of potential rep-
resentation z is 192. The duration predictor consists of a 3-
layer 1D-convolutional network with ReLU activation.

All models are trained up to 500k steps with a batch size of
16. The Adam optimizer with β1 = 0.8, β2 = 0.99 and ϵ = 10−9

is used to train all the models.

3.3. Experimental Results
We performed a mean opinion score (MOS) test for the above
systems and randomly selected 30 segments from the test set
for subjective listening, and ten listeners attended the test. The
objective metrics, including F0 Root Mean Square Error (F0-
RMSE) and duration Root Mean Square Error (dur-RMSE), are
calculated to evaluate the performance of different systems. The
results are summarized in Table 1.

To evaluate the performance of the proposed VISinger 2
in a general SVS scenario, we first compared VISinger 2 with
CpopSing and VISinger at the 22.05kHz sampling rate. As
shown in Table 1, VISinger 2 and VISinger perform signif-
icantly better than CpopSing in the MOS test, demonstrating
the superiority of the end-to-end model in the general SVS sce-
nario. Meanwhile, the MOS score of VISinger 2 is higher than
VISinger by about 0.23, indicating the effectiveness of our de-
sign in a general SVS scenario. For further validation of the
performance of VISinger2 in high sampling rate SVS scenar-
ios, we compared VISinger 2 with RefineSinger at the 44.1 kHz
sampling rate. The evaluation results listed in Table 1 show
that VISinger 2 surpasses RefineSinger in MOS score by 33.6%
and has a MOS improvement of about 0.15 compared to the
22.05 kHz version of VISinger 2. This improvement shows that
VISinger 2 is capable of modeling high sampling rates SVS en-
ables high-fidelity singing voice generation. Note that CpopS-
ing and VISinger did not participate in the 44.1kHz comparison
for fairness as they are not designed for high sampling rate SVS.
Similar to the MOS results, VISinger 2 outperformed the other
systems in terms of objective metrics, validating our assump-
tions again.

Another observation worth highlighting is that in addition
to outperforming the other systems in MOS and objective met-
rics, VISinger 2 has the smallest number of parameters in all
comparison systems at 25.7M. This result demonstrates the ef-
fectiveness of our proposed approach and its sufficiency to be
applied in real-world scenarios.

We further visualize the waveforms generated by
VISinger 2 in Fig. 2 to illustrate the role of the DSP syn-

a) Results of Harmonic Synthesizer b) Results of Noise Synthesizer

d) Final Result of VISinger 2c) DSP Waveform

Figure 2: Visualization of the synthesized waveform.

thesizer. As shown in Fig. 2, the periodic components and
aperiodic components are generated by the harmonic syn-
thesizer and noise synthesizer, respectively. The generated
periodic and aperiodic components are added to get DSP
waveform yDSP . We can also find that the waveform finally
generated by HiFi-GAN is guided by the DSP waveform as its
conditional input.

Table 2: Ablation study results in terms of subjective mean opin-
ion score (MOS).

Model Sample
Rate MOS

Recording 44k 4.47±0.09
VISinger2 44k 3.96±0.11

-auxiliary mel-spectrum 44k 3.85±0.12
-DSP synthesizer 44k 3.02±0.13

3.4. Ablation study

To validate the effectiveness of each contribution, we conduct
an ablation study. We remove the DSP synthesizer and auxiliary
mel-spectrum feature, respectively. The results are summarized
in Table 2. The results show that the model’s performance de-
grades significantly when the DSP synthesizer is deleted, indi-
cating that the DSP synthesizer plays an essential role in solving
the text-to-phase problem and glitches problems. At the same
time, when the auxiliary mel-spectrum feature is deleted, the
model’s performance degrades slightly, indicating that the aux-
iliary mel-spectrum can further solve the text-to-phase problem
because a complete mel-spectrum guides the prediction of the
prior z.

4. Conclusions
In this work, we have updated our previous end-to-end singing
voice synthesis system VISinger to its new version VISinger 2.
Specifically, we solved the text-to-phase problem and the glitch
artifacts problem and upgraded the sampling rate from 24KHz
to 44.1KHz for a high-fidelity singing generation. These new
contributions were achieved by incorporating a differential dig-
ital signal processing (DDSP) synthesizer with the VISinger
decoder. In this way, the posterior encoder extracts the la-
tent representation without phase information and avoids the
prior encoder modeling text-to-phase mapping. To avoid glitch
artifacts, we modified the decoder to accept the waveforms
generated by the DSP synthesizer as a condition to produce
the singing voice. Our experimental results show that, with
fewer model parameters, VISinger 2 outperforms CpopSing,
VISinger, and RefineSinger substantially.
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