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Abstract
In representation learning, the promise of disentanglement
methods is to decompose an input signal into a set of indepen-
dent and interpretable attributes. Some metrics, such as the DCI
or MIG scores, have been proposed to evaluate how much this
goal is reached. They analyse the relationship between the rep-
resentation components and the desirable attributes. This paper
shows that, even when applied to synthetic datasets generated
from a closed list of generative factors, these metrics can be too
optimistic. In particular, it reports that a generative factor can
be recovered from an altered disentangled representation from
which it has been supposedly removed, according to the me-
trics. Based on this observation, a new criterion called latent
decimation is proposed to evaluate disentanglement through the
accuracy of factors prediction from subsets of latents. A new
metric called MIDCI is defined, and its relevance is demon-
strated on voice data.
Index Terms: voice analysis, disentanglement, representation
learning

1. Introduction
In a world where Transformer-based technologies [1] can create
images from text prompts and answer our questions, one could
imagine modeling a voice from scratch by explicitly defin-
ing its characteristics, such as states (e.g., affect, intoxication,
sleepiness), traits (e.g., age, gender, accent, vocal persona [2])
and timber attributes (e.g., roughness, breathiness, nasality).
Whereas we know how a human produces speech, and despite
protocols to assess voice quality [3, 4] and perception [5], defin-
ing a set of explicit voice attributes is still an open issue, as there
is neither an exhaustive taxonomy nor methods to disentangle
or control them in voice generation. Being able to decompose
a voice signal into a closed and exhaustive set of attributes can
be seen as the holy grail for many applications in the fields of
voice analysis, conversion or synthesis.

Within speech research fields, disentanglement still remains
an ambiguous term. In text-to-speech (TTS) or voice conver-
sion (VC) literature, speech disentanglement mainly refers to
the discrimination of two sides of a speech signal: “what is
said” (speech units, phonemes, words) versus “who is speak-
ing”, to control speech synthesis. Speaker embeddings [6] are
widely used to control speaker identity [7]. The speaker side
may be further split to handle other attributes, as prosody, style
or emotion [8, 9, 10]. Zero-shot VC or TTS have also been
impressively improved, with very natural speaker, prosody and
style transfer [11]. Despite the very promising results, they still
do not allow a fine-grained control over voice attributes. For
style transfer, Global Style Tokens (GST) [12] were a first step
in this direction, as styles are controllable by tokens automati-

cally learned in an unsupervised way.
Often misregarded by speech literature, disentanglement is

a full-fledged research field, where disentangled representation
learning aims to align salient factors of variation within data
to individual components of representations [13]. Such rep-
resentations also provide interpretability and controllable data
generation when generative models are involved. Unsupervised
learning of disentangled representations goes further, by letting
models discover independent variations directly from the raw
data. In the literature, a commonly used definition of a disen-
tangled representation states that each of its components (also
called latents or codes) should be sensitive to changes of only
one of the factors of variation [14].

Popular models for unsupervised disentanglement learn-
ing are usually based on Variational Autoencoders (VAE) [15].
Many contributions have tricked and extended VAE’s loss in
order to enforce disentanglement [16, 17, 18, 19]. Following
this, a more subtle control of speech generation has been pro-
posed via conditional generative models based on VAE and
Tacotron [20, 21]. But there is still no real interpretability of
explicit voice attributes except for prosody. Beyond phonemes
and prosody, disentangled speaker embeddings conveying ex-
plicit speaker traits, states and timbral attributes would up-
grade voice generation to a next level. And to do so, we have
to discover what are the generative factors deeply hidden in
speech data. Disentanglement learning is a promising paradigm
to learn representations which can automatically capture new
voice attributes, so far hard to annotate or even define, thus
inaccessible for conventional approaches. Another challenge
arising from this goal is how to characterize which attribute is
captured, and if so by which latent. The described purposes
are hopefully leading to speech synthesis systems with effec-
tive “control knobs” to tune voices at will, to mimic existing
voices or to create fresh new ones.

Measuring disentanglement is still an open problem. De-
pending on the adopted definition of “what is a disentangled
representation”, a wide spectrum of metrics have been pro-
posed and challenged [22, 23]. Furthermore, most related stud-
ies handle image disentanglement, and conveniently use syn-
thetic image datasets [24, 25] , as true factors of variations are
known, which is required to assess disentanglement. Concern-
ing speech, the toy dataset diSpeech [26] is for now the only
available analogous dataset. It synthesizes fake vowels from
fundamental frequency and formants values. Our study is basi-
cally tied to such a synthetic corpus, as using a realistic voice
dataset implies relying on annotated attributes (and not factors
of variations) which may not be exhaustive or well-balanced
enough to assess metrics reliability.

To this end, we believe that the existing disentanglement
metrics remain too high-level to truly disclose hidden disen-
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tanglement related behaviors. Therefore, we propose a deeper
analysis, based on DCI [27], to boost our interpretation of la-
tent / factor relations. We also propose a latent decimation
process for disentanglement analysis. Applied to diSpeech, it
reveals misleading outcomes of the existing metrics in some
situations. These observations finally bring us to propose an
alternative way to compute DCI, also inspired by MIG [19],
ending up to Mutual Information based DCI (MIDCI). Exper-
iments are only presented on diSpeech, but it is worth to note
that same results were obtained and assessed on the various syn-
thetic datasets and with the a wide range of models implemented
in disentanglement_lib.

This paper describes the main existing disentanglement
metrics in Section 2. Their skills and weaknesses are compared
in Section 3, and the latent decimation process is explained and
illustrated. Section 4 describes the proposed extended metric,
and Section 5 concludes.

2. Related works
Hereafter we provide an overview of the related works about
voice attributes factorization and disentanglement learning.

2.1. Voice attributes factorization

Speech disentanglement mainly refers to voice attributes fac-
torization in distinct parts of a model. AutoVC [7] disentan-
gles speaker information from the remaining information for
voice conversion. SpeechSplit2.0 [9] automatically decom-
poses speech into content, rhythm, pitch and timbre. Fast-
Speech2 [8] enables a control of speech generation via pitch,
intensity, and phoneme duration. However, voice cloning is
usually focused on the source and target speaker signatures,
whereas the goal of speech disentanglement is to structure the
whole speakers acoustic space.

In this direction, variational approaches such as GM-
VAE [21], FHVAE [28] or Capacitron [20] propose im-
plicit embedding decomposition and conditional dependen-
cies to improve naturalness of voice cloning or style transfer.
TacoSpawn [29] is probably the closest related works to our
long-term goal: it learns a distribution over a speaker embed-
ding space and enables sampling of fresh new speakers.

More recently, VALL-E [11] significantly outperformed the
state-of-the-art zero-shot TTS system in terms of naturalness,
speaker similarity, emotion and acoustic environment preser-
vation in synthesis. Although very accurate and impressive,
it does not provide the freedom to explicitly control voice at-
tributes. Even with 60k hours of data for training, it still cannot
cover everyone’s voice, especially accents.

2.2. Disentanglement learning

Emerging from the postulate that learned representations are
still not able to properly organize discriminative information
from data [13], disentanglement learning aims to extract repre-
sentations which identify and separate the underlying explana-
tory factors of observed data in a latent space. This space is
continuous (i.e. close data points should be close in repre-
sentation space) and complete (i.e. interpolation between rep-
resentations and sampled latents should stay informative and
consistent). VAE fulfills this desiderata, as it approximates
data distribution, and enforces independence between individ-
ual components. Numerous VAE extensions have been shown
to effectively disentangle factors of variation in synthetic image
datasets. β-VAE [16] has first emphasized the reconstruction /

disentanglement trade-off, adjusted with the weight β applied to
the Kullback-Leibler divergence (DKL). CCI-VAE [18] high-
lights the information bottleneck upper-bounded by the DKL,
and regulates the capacity of the latent space with a constant C.
Factor-VAE [30] and β-TCVAE [19] decompose the DKL term
to point out and penalize the total correlation between latents.

Disentanglement learning studies require tailored datasets
in which generative factors of variations to disentangle are
salient and known. dSprites [24] and Cars3D [25] are among the
most commonly used playground to test models. diSpeech [26]
is a dataset of synthetic vowels, with 5 factors of variation: the
first 3 formants, F1, F2, F3, the pitch and the pitch fade rate.
We will rely on this corpus, with the same settings as in [26] (15
values per factor), to study speech disentanglement and metrics.

As there is still no consensual definition of a disentangled
representation, a large amount of metrics have been proposed.
In Carobonneau et al.’s work [22], they are reviewed and clas-
sified in 3 categories. Intervention-based metrics set a subset
of factors and sample the remaining ones, to evaluate the cor-
relations of the chosen factors with latents (e.g., Z-diff [16]).
Predictor-based metrics (e.g., DCI [27]) train regressors or clas-
sifiers to predict factor values from latents. DCI is actually com-
posed of 3 scores: Disentanglement i.e. how much each latent
is important to predict one factor, Completeness i.e. how much
each factor is predicted by only one latent, Informativeness i.e.
the factor predictions accuracy. Finally, information-based met-
rics rely on information theory to estimate the localization and
amount of factor information in the latent space. For instance,
MIG [19] computes the mutual information (MI) between each
pair latent / factor and relies on gaps to assess if for each factor,
information is concentrated in one latent.

Nevertheless, we believe that these metrics are too high-
level for our needs: they focus on grading each model with a
unique and global score, which prevents a detailed per-factor
analysis. Hence, we propose an in-depth interpretation of the
DCI score, which yields a better comprehension of the relations
between latents and factors, through the visualization of the im-
portance matrix (as [27, Fig 3]) together with the factor-wise
completeness and latent-wise disentanglement and informative-
ness, which are pragmatic indicators of these relations.

Furthermore, it turns out that in some cases, predicting fac-
tors when removing the most informative latents with respect
to the importance matrix, while factor’s completeness is actu-
ally high, is still achievable with a high accuracy. This routine,
which we called latent decimation, brings us to question the
DCI reliability, similarly to Locatello et al. [23]. Based on sim-
ilar observations, Eastwood et al. [31] have proposed DCI-ES to
decorrelate the DCI scores from the prediction algorithm they
depend on. The proposed latent decimation can be seen as a
complementary sanity check of DCI’s indications, whatever the
prediction algorithm.

3. Metrics analysis
The review of disentanglement metrics proposed by Carbon-
neau et al. [22] lists a range of metrics based on different ap-
proaches and assumptions. Even for synthetic datasets with a
limited number of generative factors and latents, the disentan-
glement measure may vary significantly from one metric to an-
other, as shown by Locatello et al. [23, Fig 2], Carbonneau et
al. [22, Fig 3] and in Figure 1a. Obviously, it makes it diffi-
cult to choose an appropriate metric, and it thus appears useful
to compare their skills and the approximations they rely on, so
as to emphasize their advantages and drawbacks. This is de-
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veloped in Subsection 3.1, with a focus on the DCI, MIG and
Z-diff metrics. We then describe in Subsection 3.2 disentangle-
ment evaluation on diSpeech augmented with in-depth analysis
of metrics. Subsection 3.3 illustrates how the metrics some-
times fail to properly evaluate the disentanglement.

3.1. Comparison of the existing metrics

One major advantage of the DCI metrics is that it provides three
indicators, that measure 3 different aspects of the disentangle-
ment (see Section 2). Also, the DCI metrics are computed
thanks to an importance matrix in which each component rep-
resents the relationship between the latents and the generative
factors (see Figure 1c). This is useful as it allows a per-factor
analysis instead of a global score (see Figure 1b). Indeed, as a
general rule, some factors can be well disentangled while others
are not, due to the structure of the data, the nature of the factor,
or its impact on the data generation.

On the other hand, the components of the importance ma-
trix (the importance weights), are deduced from the parame-
ters of a regressor (or classifier when categorical factors are
concerned) trained to predict the factors knowing the latents.
Although they are clearly influenced by the information about
each factor contained in each latent, which is relevant for the
metrics, these amounts can be altered by the kind of regressor
used, the implementation, the assumed relationship between la-
tents and factors (is it linear or not?) and so on.

The information-based approaches such as the MIG score
do not suffer these drawbacks, as they rely on the computation
of the MI between factors and latents, which is often used as
a generalized correlation coefficient [32]. But still, there are
algorithmic parameters to be chosen. In addition, correlations
between latents and between factors are ignored. Also, the met-
ric relies on gaps between the most and second most important
MI for each factor, favoring information to be located in a single
latent for each factor, and disadvantaging cases where a factor
might needs 2 latents to be perfectly captured. In addition, it to-
tally misses out the Disentanglement part of DCI as the latents
capturing multiple factors are not penalized [22].

The Z-diff metric and its variants also uses a prediction al-
gorithm to provide its outcome, but through a low-complexity
linear classifier, by design. Thus the score is less dependent on
tunable parameters. Nevertheless, its principle consists in find-
ing the most correlated latent to a given factor, ignoring possible
correlations to other latents, what often makes its disentangle-
ment evaluation too optimistic.

Following [22, Tab 2], DCI is the metric that covers the
most characteristics. Pragmatically, it is indeed convenient to
have a precise idea of latent / factor relationships, factor-wise
Completeness and latent-wise Disentanglement. MIG has the
advantage to not be influenced by predictor intricacies, but has a
too restrictive assumption of disentanglement by using MI gaps.

3.2. diSpeech disentanglement

Thanks to the disentanglement_lib [23] library, we have
experimented a broad range of disentangling models on diS-
peech corpus. In this article, we retained results of β-TCVAE
trained with 8 latent dimensions, as it reached the best perfor-
mances, but similar observations where made with other models
and datasets (see Section 2). Z-diff, MIG and DCI1 analyses are
presented in Figure 1. Metrics values are reported in Figure 1a.

1implemented with XGBoost library, for faster computation
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Figure 1: diSpeech disentanglement evaluation

Z-diff suggests a really good disentanglement, while other met-
rics are more mitigated, especially MIG.

But these global measures keep hidden the disentanglement
of each factor. Hence, we report in Figure 1b MIG, Com-
pleteness and Informativeness for each factor, showing that per-
formances highly depend on the considered factor. Formants
(F1,F2,F3) seem well disentangled, while pitch (F0) and fade
have poor MIG, Completeness and Informativeness.

A closer look at the DCI importance matrix in Figure 1c
indicates which latent disentangles each formant : F1: latent
0, F2: latent 4, and F3: latent 3. Cell values are the percent-
age of importance (feature importance × 100). Figure 1c also
aligns the importance matrix with entropy-based factor-wise
Completeness (right part) and latent-wise Disentanglement (up
part), and factor-wise Informativeness. Latent and factor vari-
able importance weights (ρs in [27]) are also reported next to
their respective values (thin dark bars). Figure 1c is thus an
informative yet condensed view of factor / latent relations. It
is also suggested by traversals in Figure 1d, where the corre-
sponding formants are clearly moving in dimensions 0, 4 and 3,
respectively, and only in them.

3.3. Sanity check via latent decimation

In order to figure out if metric outcomes correctly reflect the
disentanglement properties of a latent representation, we con-
ducted experiments based on what we call latent decimation.
The idea is to remove the most informative latents with respect
to a given factor, and measure how much of its information has
been lost. This loss is evaluated thanks to a predictor (same as
DCI), trained to predict the factor from the remaining latents,
and the accuracy drop is used to measure the information loss.
Thus, if a factor is well disentangled, removing its most impor-
tant latent should results in a drastic drop of accuracy.

The latent decimation performed with the model described
in Subsection 3.2 is depicted in Figure 2. For each factor, the
most important latent (with respect to DCI importance matrix)
is removed to rerun prediction. Then, the latents importance is
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Figure 2: diSpeech latent decimation

deduced again, and the new most important latent is removed.
This process is repeated until 1 latent is left. The R2 scores
of each iteration and factor are plotted in Figure 2a. Counter-
intuitively from results in Subsection 3.2, factors are still pre-
dictable with a decent accuracy, meaning that factors’ informa-
tion is not only contained in the most important latents, and not
that well disentangled as suggested by DCI.

At each decimation step, we can keep track of latents im-
portance order to assess consistence along iterations. The or-
dered latents at each decimation for F1 are logged in Figure 2b:
in each column, latent index are stacked in a importance as-
cending order, and the color scale reflects the importance value.
It appears that importance order is not consistent: latent 7 is
the second most important latent at the beginning, but is re-
ported the most important only 5 steps further. Similar inconsis-
tent behavior can be observed, with latent 4 and 2 for instance.
These changes underline that information about factors can be
spreaded in other latents, but neither used by predictors (for DCI
computation) nor decoders (for transversal generation).

As pointed out, good disentanglement of formants deduced
by DCI is compromised by latent decimation sanity-check. This
is following Locatello et al.’s [23] conclusion on the importance
of the assessment of the practical benefit of disentanglement.
Biases induced by predictors lead to a misleading DCI scoring.
It can be overcome by using an importance matrix based on MI.

4. Metric extension
DCI appears in the literature and the experiments in Section 3
as a useful metric to disclose factor / latent relations. We also
showed that DCI assessments can be contradicted by the latent
decimation procedure. Hence, we coined the MIDCI metric,
which is detailed hereafter. Its accordance to latent decimation
is then demonstrated.

4.1. MIDCI

In order to overcome predictor biases in DCI, we propose to
compute importance matrix based on MI as done in MIG and
deduce Disentanglement and Completeness as in DCI. Let i ∈
{1, . . . , F} and j ∈ {1, . . . , L}, F the number of factors and
L the number of latents. The MI matrix is defined as

Ri,j =
I(fi; lj)

H(fi)
, (1)

with I(f ; l) the MI between factor f and latent l. MI is divided
by H(f), f ’s entropy, so that Ri,j ∈ [0, 1]. Straightforwardly,
Disentanglement and Completeness are defined as Eastwood et
al. [27], by using entropy along latents and factors respectively.

Note that S =
∑L

j=1 Ri,j does not necessarily equal to 1,
as Ri,j embodies fi’s rate of information captured by lj which
can be incomplete (S ≤ 1) or redundant (S ≥ 1), due to “cross-
information” shared with other latents.
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We can also define an information-theory-based formula-
tion of the factor-wise Informativeness Infoi, as:

Infoi = 1− H(fi|l1, . . . , lL)
H(fi)

. (2)

Nevertheless in practice, the great number of data and a
possibly important number of latents and factors result in a
multivariate distribution, which makes the computation of Infoi

a complex challenge. This definition of MIDCI takes ben-
efits from both DCI and MIG: MI based importance matrix
overcomes predictors biases, and latent-wise Disentanglement
/ factor-wise Completeness provide in-depth insights of latent /
factor relationships.

4.2. diSpeech MIDCI

Coming back to diSpeech disentanglement, applying MIDCI is
equivalent to replace importance matrix 1c with MI matrix, re-
sulting in Figure 3. In conformity with latent decimation, Com-
pleteness appears less optimistic.

In order to assess if MIDCI is closer than DCI to latent deci-
mation latents ordering, we used Normalized Kendall τ distance
(Kn) [33]. Figure 4 shows that for several models (described
in Subsection 2.2), with several number of latents (8, 16, 32),
Kn is, for each latent, in average smaller with MIDCI than with
DCI. Hence, a better accordance is achieved when using MI,
demonstrating an improved reliability.

We have extended the described experiments on visual syn-
thetic datasets, as those mentioned in Section 2. Results are
overall similar to what is observed with diSpeech, but we no-
ticed some fluctuations for complex factors (rotation, azimuth
in visual datasets), where DCI has a better Kn than MIDCI.

5. Conclusion
In this study, we proposed a first step to bridge the gap be-
tween two worlds: disentanglement theory, generally associated
to image analysis, and voice analysis/generation where disen-
tanglement terminology is mainly restricted to phonetic content
vs speaker identity discrimination, without making any use of
standard disentanglement metrics. Based on a factor-wise ap-
proach deriving from a long-term goal of controlling voice gen-
eration via explicit voice attributes, we highlighted the behav-
ior of dedicated metrics on a toy dataset of synthesized speech.
We extracted hidden biases of the DCI and proposed an analy-
sis grid coupled to a latent decimation-based sanity check and
a more reliable version of DCI relying on mutual information,
MIDCI. Although explicited on a single dataset of synthesized
speech, the trends are also observed on standard disentangle-
ment datasets, and we believe this study serves as a preliminary
research work, which can be beneficial to further investigations
in the field of voice generation.
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