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Abstract
Automatic Speaker Verification (ASV) systems are vulner-

able to various attacks, especially spoofing attacks, and there-
fore are typically protected by spoofing countermeasures. How-
ever, both spoofing countermeasures and ASV models are vul-
nerable to adversarial attacks. We propose DoubleDeceiver - a
novel black-box attack method that incorporates text-to-speech
synthesis and adversarial attack to deceive ASV systems even
with the protection of spoofing countermeasures. Although
the surrogate models and victim models differ in architectures,
DoubleDeceiver achieved a successful attack rate (SAR) as high
as 98.3%. DoubleDeceiver identified the vulnerabilities of ASV
systems and issued a warning that solely relying on the spoof-
ing countermeasures is not reliable to protect ASV systems’ se-
curity. This work encourages the development of more secure
anti-spoofing and ASV systems by highlighting the need to con-
sider composite attacks in future designs.
Index Terms: speaker verification, spoofing countermeasure,
adversarial attack, black-box attack, text-to-speech

1. Introduction
ASV systems aim to verify whether an input utterance is uttered
by the registered speaker. ASV can be applied in many scenar-
ios that require a high level of security and privacy [1,2], such as
access control, and banking services. The advancement in Deep
Neural Networks (DNN) promoted the development of ASV
systems which resulted in state-of-the-art performance [2].

Despite the good performances, ASV systems are vulnera-
ble to various attacks. The mainstream methods of attacks are
called spoofing attacks [3] which include voice conversion, text-
to-speech (TTS), and replay attacks. To mitigate these threats,
spoofing countermeasures (anti-spoofing) [4] have been devel-
oped, which are widely used to protect real-world ASV sys-
tems [5]. However, the DNN-based systems are also susceptible
to adversarial attacks [6, 7].

Previous works [5, 8–17] investigated the vulnerability of
various ASV or anti-spoofing models to adversarial attacks in
various settings. Few works achieved a high SAR in the black-
box scenario. Notably, most of the research [8–17] are lim-
ited to conducting adversarial attacks against standalone mod-
els, while few studies investigate the ASV systems protected by
spoofing countermeasures, which are more practical in a real-
world setup. Although anti-spoofing models are designed to
protect ASV systems from spoofing attacks, it has been proved
in our experiments that they achieve outstanding performance

∗Both authors contributed equally to this work.
†Work done during internship at Huawei International.
‡Corresponding author.

in preventing adversarial attacks tailored for ASV models. For
example, as one of the SOTA adversarial attacks against stan-
dalone ASV models, FAKEBOB’s [13] performance heavily
degraded by 70% when attacking ASV systems protected by
spoofing countermeasures because only 38% of the adversarial
examples can bypass an open-source anti-spoofing model.

To the best of our knowledge, the most related work [5] that
targets the joint system of anti-spoofing and ASV models only
considered a white-box scenario and was evaluated on only one
ASV model. Furthermore, the area of anti-spoofing and ASV
evolve quickly in recent years, and many of the previously stud-
ied models become obsolete. Thus, a real-world setup (i.e., an
advanced black-box ASV system protected by spoofing coun-
termeasures) renders most previous attacks impractical and the
vulnerability of such a joint system still remains uncertain.

We propose DoubleDeceiver - a novel targeted black-box
adversarial attack method against advanced ASV systems pro-
tected by spoofing countermeasures. DoubleDeceiver focuses
on generating adversarial examples with transferability which
are challenging [13]. Another challenge is to generate adversar-
ial examples that can deceive two models with different func-
tionalities simultaneously. DoubleDeceiver incorporates speech
synthesis and adversarial attacks. Instead of relying on source
speakers, DoubleDeceiver first synthesizes voices that mimic
the target speaker using a zero-shot multi-speaker TTS (ZS-
TTS) synthesizer [18]. Then it adds adversarial perturbations to
the raw waveforms of the synthesized voices using a gradient-
based method to bypass spoofing countermeasures and deceive
the ASV model. DoubleDeceiver has the following advantages:
• Effective and efficient. The synthesized voices act as strong
bases for generating adversarial examples, located closely to the
decision boundaries of ASV models. DoubleDeceiver achieves
an overall SAR as high as 98.3% even when the surrogate mod-
els and victim models are of different architectures. Besides,
DoubleDeceiver is still effective with only small perturbations,
achieving a SAR of 69% on average and 91.1%, the highest.
• Practical. DoubleDeceiver attacks advanced ASV systems
protected by spoofing countermeasures, which are widely de-
ployed in real-world applications. By utilizing ZS-TTS, adver-
sarial examples with any length and content could be generated
without the need for a source speaker, which gives the attackers
great flexibility. By only applying publicly available surrogate
models, DoubleDeceiver launches targeted attacks that better fit
the goal of attackers in real world, i.e., impersonating the target
speaker, and inducing severe threats to real-life users.
• Silent. DoubleDeceiver targets black-box scenarios where
attackers have no access to the victim models even its out-
put. Only a short utterance from the target speaker, e.g., voice
recordings, is needed for ZS-TTS, which are both easily acces-
sible in real-world, and stealthy attacks are enabled.
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Figure 1: DoubleDeceiver - attack flow. The arrows represent the order of steps.

2. Adversarial attacks
• Adversarial attack methods. Adversarial attacks [6, 7] be-
came a significant threat to machine learning models. Different
adversarial attack methods aim to generate a small perturbation
δ such that f(x + δ) = ytarget where x is the clean input,
ytarget is the attacker’s desired output and ytarget ̸= f(x).
Gradient-based methods, which is one of the most widely used
adversarial attacks, utilize gradients to search for adversarial
perturbation ϵ. Representative gradient-based methods include
FGSM [7], BIM [19], PGD [20] and MI-FGSM [21].
• Adversarial attack type. In general, there are two cate-
gories of adversarial attacks: white-box and black-box attacks.
In white-box attacks, the attacker has full access to the DNN
system’s information, e.g., architecture and parameters. The
attackers can access at most the output of the system in black-
box attacks, which are more challenging and practical. The ad-
versarial attacks can also be categorized into targeted or non-
targeted attacks according to the attacker’s goal. In the con-
text of ASV, non-targeted attacks aim to let the ASV system
misclassify legal users, while targeted attacks aim to imperson-
ate the registered speaker. DoubleDeceiver assumes a targeted
black-box attack scenario as it is more practical and threatening.
• Adversarial attacks on ASV and anti-spoofing models.
Previous works [8,9] proved that the most commonly used stan-
dalone ASV models, i-vector and x-vector, are vulnerable to
adversarial attacks. The adversarial perturbation can be either
added to acoustic features [10] or raw waveform of the audio
[11]. Some further explored the effectiveness of adversarial ex-
amples in physical access scenarios [12, 13], while others tried
to make adversarial perturbations more imperceptible [14, 15].
Standalone anti-spoofing models are also proved to be vulnera-
ble to adversarial attacks in both white-box and black-box sce-
narios [16]. Zhang et al. [17] further investigated black-box
transfer-based attacks against anti-spoofing models using model
ensemble to enhance the transferability of adversarial examples.

However, adversarial attacks against a joint system of anti-
spoofing and ASV models are not well studied and such systems
deployed in real-world applications still face the potential threat
of adversarial attacks. By carrying out adversarial attacks on
such systems, this paper aims to highlight the need for a more
secure and robust ASV application.

3. Methodology
DoubleDeceiver consists of three modules as shown in Figure
1: (1) synthesize voice, (2) generate adversarial example, and
(3) conduct black-box transfer attack. DoubleDeceiver follows

a modular setting, i.e., the ZS-TTS model, gradient combina-
tion function, and gradient-based adversarial attack method are
highly flexible, as shown in Algorithm 1. This work employs
the gradient combination function gt = gAS + gASV , and the
gradient-based method BIM. Other ways of combining gradi-
ents and adversarial attacks will be explored in the future.

Algorithm 1 DoubleDeceiver. Parameter ω is specific to the
attack method, e.g., step size α for BIM

Input: ZS-TTS model LTTS , surrogate anti-spoofing model
LAS , surrogate ASV model LASV , a short reference voice
γ, a short string S, perturbation budget ϵ, number of iter-
ation T , adversarial attack method fadv parameterized by
ϵ and ω, gradient combination function fg , loss function J
that takes target class and model’s output to give the loss.

Output: Adversarial example x∗ with speech content S
1: x∗

0 ← synthesized voice from LTTS subject to γ and S
2: for iteration time t← 1 to T do
3: gAS ← ∇xJAS(x

∗
t−1, y

target
AS ) ▷ LAS’s gradient

4: gASV ← ∇xJASV (x∗
t−1, y

target
ASV ) ▷ LASV ’s gradient

5: gt ← fg(gAS , gASV )
6: x∗

t ← fadv(gt, x
∗
t−1, x

∗
0; ϵ, ω)

7: end for
8: return x∗

T

Generating adversarial examples that deceive two models is
challenging because the perturbations required to fool models
with different functionalities may conflict with each other in the
direction, which might diminish the effectiveness of adversarial
examples. As no clue about the victim model can be accessed
in the black-box setting, the resultant cross-architecture setting
degrades the transferability of adversarial examples. DoubleDe-
ceiver combines speech synthesis with adversarial attacks to
achieve better results.

3.1. Threat model

We consider a practical black-box threat model where the utter-
ance is accepted only if it passes both the anti-spoofing model
and the ASV model in logical access scenarios. The attacker
aims to impersonate the registered speaker and is able to ob-
tain a short utterance from the target speaker but does not have
any information about the victim system. Then the attacker
uses publicly available models to generate synthesized voice
and adversarial examples. The victim models each have a pre-
set threshold θ and give an acceptance decision only if the input
voice’s score is not less than θ. There are other ways of combin-
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Table 1: Overall SARs(%). Surrogate anti-spoofing model: LCNN, victim anti-spoofing model: ResNet-OC.

Sur. T-P Res. Raw. E-T

SNR(dB)
ϵ

Vic. Res. Raw. E-T T-P Raw. E-T T-P Res. E-T T-P Res. Raw.

- 0.000 0.0 0.0 0.0 2.5e-4 0.0 0.0 2.5e-4 0.0 0.0 2.5e-4 0.0 0.0
27.1 0.004 81.3 81.0 80.0 75.9 68.9 64.2 80.3 73.4 64.6 91.1 87.4 88.7
21.6 0.008 93.5 93.7 93.1 89.9 83.8 79.4 90.0 83.0 76.0 95.8 94.6 95.4
18.2 0.012 96.5 96.3 96.4 90.4 86.0 83.7 90.2 85.0 79.5 96.1 96.8 96.6
15.8 0.016 97.6 97.5 97.6 89.3 87.6 85.5 89.7 85.5 80.3 96.0 97.8 96.5
13.9 0.020 98.3 98.2 98.3 87.3 87.3 85.9 88.6 85.5 80.0 94.6 98.0 96.2

* Sur. and Vic. represent surrogate and victim ASV models, respectively. T-P, Res., Raw., and E-T represents TDNN-PLDA, ResNetSE34V2, RawNet3,
and ECAPA-TDNN respectively. The SARs are tested on the same 4,000 base voices with different ϵ and models. The same abbreviations and base
voices are applied in the rest of the tables.

Table 2: Overall SARs(%). Surrogate anti-spoofing model: AASIST, victim anti-spoofing model: ResNet-OC.

Sur. T-P Res. Raw. E-T

SNR(dB)
ϵ

Vic. Res. Raw. E-T T-P Raw. E-T T-P Res. E-T T-P Res. Raw.

- 0.000 0.0 0.0 0.0 2.5e-4 0.0 0.0 2.5e-4 0.0 0.0 2.5e-4 0.0 0.0
26.1 0.004 72.5 72.1 71.5 58.0 54.7 53.7 76.7 71.0 64.6 42.9 42.2 42.4
21.0 0.008 88.3 88.7 88.3 88.7 84.2 83.5 92.1 85.5 81.8 78.5 77.3 77.4
17.8 0.012 93.8 93.8 93.9 96.6 90.8 92.2 95.8 90.0 87.0 90.7 90.0 89.5
15.6 0.016 96.2 96.3 96.3 97.8 92.7 94.7 96.8 92.1 89.3 96.0 95.6 94.4
13.8 0.020 97.2 97.3 97.3 98.0 92.7 95.2 96.4 92.8 89.8 97.0 97.2 95.5

Table 3: SARs(%) on standalone victim anti-spoofing model
(ResNet-OC). Surrogate anti-spoofing model: AASIST

ϵ
Sur. T-P Res. Raw. E-T

0.000 0.10
0.004 74.53 59.40 80.05 43.68
0.008 90.05 90.65 94.85 79.35
0.012 94.83 98.25 98.78 91.90
0.016 97.00 99.65 99.65 97.05
0.020 97.98 99.93 99.85 98.35

ing anti-spoofing and ASV models other than this decision-level
fusion method, and we will explore them in future work.

3.2. Attack flow

• Synthesize voice. Previous works use source speakers’ voices
as bases to generate adversarial examples. The source speaker
and target speaker might differ significantly in terms of timbre,
which reduces transferability of adversarial examples. Dou-
bleDeceiver uses the ZS-TTS system to first generate synthe-
sized voices based on a short utterance from the target speaker
( 1 ), as illustrated in Figure 1. Experiments reveal that syn-
thesized voices act as strong bases for adversarial attacks, often
lying close to the decision boundary or already being identified
as the target speaker, reducing the risk of local optima. An-
other advantage of synthesizing base voices is that it can gen-
erate voices with any length and content, which enables the at-
tacker to deceive the victim systems that require input voices to
include specific content such as commands or random numbers.
• Generate adversarial examples. By feeding the synthe-
sized voice into the surrogate anti-spoofing model and ASV
model, each model generates a loss given the target label ( 2
& 3 ). The gradients of both losses with respect to the in-
put are obtained by performing back-propagation. To minimize
both losses, the combined gradient is calculated by adding these
two gradients ( 4 ). Then the gradient-based adversarial attack

method (BIM) is performed to get the adversarial perturbation.
BIM [19] is defined as follows:

x∗
0 = x (1)

x∗
i+1 = Clipϵx(x

∗
i − α · sign(∇xJ(x

∗
i , y

target))) (2)

x is the clean input. The subscript i represents variables in
the ith iteration. i satisfies 0 <= i <= T where i = 0 rep-
resents the initial value before iterations and T is the maximum
number of iterations. x∗

i is the perturbed input. J(x∗
t , y

target)
is the loss function given input x∗

t and target class ytarget and
is defined as J = θ−Score in this paper. ∇x∗

i
J is the gradient

of the loss function with respect to input x∗
t . In equation (2), α

is the step size satisfying 0 < α < ϵ where ϵ is the budget of
adversarial perturbation. Clipϵx clips x∗

i to make it stay within
L∞ ϵ-neighborhood of clean input x. During the iterations, the
adversarial example moves toward the direction that minimizes
J so that it could be recognized as the target label. In each it-
eration, the adversarial perturbation is added to the synthesized
voice (first iteration) or the perturbed voice from the previous it-
eration ( 5 ) and 2 continues. After the maximum T iterations,
the adversarial example is obtained ( 6 ).
• Conduct black-box transfer attack. The generated adver-
sarial example is fed into the victim system ( 7 ). The attack is
successful only if the adversarial example passes both models,
i.e., it is classified as bona fide and registered speaker. Mean-
while, if the adversarial example is classified as spoofed by the
victim anti-spoofing model or unknown speaker by the victim
ASV model, it is rejected by the system.

4. Experiments
4.1. Experiment setting

All codes are implemented in Python utilizing the PyTorch li-
brary. The hyper-parameters are as follows: maximum iteration
time T = 30, step size α = ϵ/10.
• Datasets. Experiments have been carried out based on Vox-
Celeb1 [22]. The 40 speakers (20 males, 20 females) in the
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Table 4: SARs(%) on standalone ASV models. Surrogate anti-spoofing model: AASIST

Sur. T-P Res. Raw. E-T

ϵ
Vic. Res. Raw. E-T T-P Raw. E-T T-P Res. E-T T-P Res. Raw.

0.000 64.9 50.8 45.1 75.1 50.8 45.1 75.1 64.9 45.1 75.1 64.9 50.8
0.004 96.7 96.4 95.7 97.8 90.1 88.4 95.9 87.6 80.3 98.7 94.3 96.6
0.008 98.2 98.6 98.3 98.0 92.6 91.9 97.1 90.5 86.7 98.9 97.0 97.8
0.012 98.9 99.0 99.1 98.3 92.5 93.9 97.0 91.2 88.2 98.7 97.9 97.6
0.016 99.2 99.3 99.3 98.1 93.0 95.0 97.1 92.5 89.6 98.9 98.5 97.3
0.020 99.2 99.3 99.3 98.1 92.8 95.3 96.5 92.9 89.9 98.6 98.8 97.1

test set of verification split are used as target speakers. A ran-
domly chosen genuine voice from each speaker is used for syn-
thesizing base voices and the enrollment of the surrogate and
victim ASV models. We synthesize 100 utterances per speaker
with randomly chosen text from LibriSpeech [23], due to the
availability of transcription, to simulate the speech content and
length in real-life. For each speaker, there are 100 synthesized
voices, resulting in 4,000 adversarial examples for each ϵ.
• Models. To determine the threshold θ, we evaluate pre-
trained anti-spoofing and ASV models on the evaluation set of
the ASVspoof 2019 [24] logical access subset and the test set
of VoxCeleb1’s verification split, respectively. θ is tuned to let
the models achieve equal error rate (EER) on the evaluation set.
The pre-trained models used in the experiment and their respec-
tive EER(%) are as follows:
Surrogate anti-spoofing models: (1) LCNN1: 6.34 (2) AASIST
[25]: 2.65
Victim anti-spoofing model: ResNet-OC2 [26]: 1.56
Surrogate/Victim ASV models: (1) TDNN-PLDA3 [27]: 2.97
(2) ResNetSE34V24 [28]: 1.26 (3) RawNet3 [29]: 1.00 (4)
ECAPA-TDNN [30, 31]: 1.15
• Evaluation metric. The SAR is used to assess the perfor-
mance of the attack. It is defined as SAR = Ns

Nt
, where the

Ns is the number of successful adversarial examples and Nt is
the total number of adversarial examples. The strength of ad-
versarial perturbation is evaluated by perturbation budget ϵ and
signal-to-noise ratio (SNR). SNR is defined as 10 · log10(Px

Pδ
)

where Px represents the power of the clean input, i.e., synthe-
sized voice, and Pδ is the power of perturbation. Larger SNR
means smaller perturbation. The experiment is conducted on a
series of ϵ ranging from 0.004 to 0.02.

4.2. Experiment results and analysis

• SARs on the victim systems. Tables 1–2 present the overall
SARs on victim systems, where adversarial examples are gener-
ated using the same synthesized voices as bases. With no adver-
sarial perturbations (ϵ = 0), synthesized voices have very low
SARs due to the presence of spoofing countermeasures. How-
ever, after adding small adversarial perturbations (ϵ = 0.004),
the SARs increase significantly in all model settings, averaging
at 69% and reaching as high as 91.1%, despite the differences
in architectures between the surrogate and victim systems.

In the majority of model settings, the SARs increase in pos-
itive correlation with ϵ, peaking at above 90% when ϵ = 0.020.
The highest SAR achieved among all settings is 98.3%, strongly
demonstrating the effectiveness of DoubleDeceiver. In some

1ASVspoof 2021: https://github.com/asvspoof-challenge/
2021/tree/main/LA/Baseline-LFCC-LCNN

2one-class softmax version
3baseline model
4H/ASP AP+Softmax

cases, the SARs first increase to the peak at an ϵ around 0.012
and then decrease. The reason could be that BIM has a fixed
step size α and it is determined by ϵ. When the ϵ and step size
α get larger, BIM may miss the optimal point and overshoot.
• SARs on standalone models. In order to better understand
the reasons behind DoubleDeceiver’s performance, the SARs
on standalone victim anti-spoofing and ASV models are pre-
sented in Table 3–4, respectively. Specifically, the surrogate
anti-spoofing model is AASIST while the corresponding per-
formances when the surrogate anti-spoofing model is LCNN
exhibit the same pattern but are not shown due to the page limit.

Without adversarial perturbations, ResNet-OC achieves
outstanding performance in detecting the synthesized voices
(ϵ = 0) with a SAR of only 0.1%. However, after adding a
small perturbation (ϵ = 0.004), there is a qualitative leap in the
SARs from 0.1% to 64% on average. Notably, the SARs quickly
rises to 99.85% with the increasing ϵ, demonstrating the severe
threats posed by adversarial attacks to the anti-spoofing model.

As for ASV models, the synthesized voices (ϵ = 0)
achieve an average SAR of 58.98% which indicates the vul-
nerability of ASV models to speech synthesis attacks. The
threats become even more significant after incorporating ad-
versarial attacks, as evidenced by the high SARs of approx-
imately 90% in most settings when the perturbation is small
(ϵ = 0.004, average SNR ≈ 26.5dB), which is on average
59.33% relative improvement compared to the SARs without
adversarial attack. This suggests that synthesized voices act as
strong base voices for the adversarial attack on ASV models.
Adversarial examples generated by surrogate systems that use
RawNet show less transferability than the ones that use other
ASV models because of the substantial difference in the input
feature, where RawNet takes raw waveform as input and other
models take human-designed acoustic features, but DoubleDe-
ceiver still achieves a SAR above 80% when ϵ = 0.004.

When ϵ is small, the SARs on the anti-spoofing model im-
pedes the overall SARs, as previously shown. This is reasonable
because anti-spoofing models are designed to detect synthesized
voices. The synthesized voices have a very close timbre to the
one from the target speaker resulting in a better performance
for the adversarial examples to deceive the ASV model than the
anti-spoofing model when the perturbation is small.

5. Conclusions
We propose DoubleDeceiver - a black-box attack method
against advanced ASV systems protected by spoofing counter-
measures, by incorporating TTS and adversarial attacks. Exten-
sive experiments show that DoubleDeceiver achieves an over-
all SAR as high as 98.3% and demonstrate that advanced ASV
models remain vulnerable to adversarial attacks, even when pro-
tected by spoofing countermeasures. To protect ASV systems,
defense mechanisms against adversarial attacks are needed.
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