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Abstract
Obstructive sleep apnea (OSA) is a condition commonly af-
fecting middle-aged men that can disturb sleep, cause day-
time tiredness, and increase the risk of heart disease. Speech
can serve as a valuable biomarker for identifying and predict-
ing the severity of OSA due to its connection with changes in
throat structure. This study proposes a new deep-learning-based
method for detecting OSA by analyzing speech recordings of
participants in sitting and lying positions. The method utilizes
a Siamese structure that employs a pre-trained XLSR model to
encode ten utterances for each position, reducing the amount of
necessary training data and enabling comparison of throat struc-
ture changes between the two positions through voice analysis.
The study also explores the use of patient characteristic fea-
tures. Results show this approach achieves an F1 value of 0.725
on our in-house dataset, proving the feasibility of end-to-end
speech OSA detection with foundation models.
Index Terms: Obstructive sleep apnea, Speech foundation
models, Speech signal analysis, Siamese network

1. Introduction
Obstructive sleep apnea (OSA) is a common sleep disorder
where the upper airway repeatedly collapses during sleep, lead-
ing to hypopnea or apnea along with hypoxia, hypercapnia, and
cortical arousal. Studies estimate that approximately 17.4% of
women and 33.9% of men aged 30 to 70 in the US have OSA
[1]. Severe OSA can cause disruptions in sleep structure and
result in daytime sleepiness, impaired work performance, and
traffic accidents [2]. Additionally, OSA has been linked to
other diseases such as hypertension, coronary artery diseases
[3], and diabetes [4]. Currently, laboratory-based polysomnog-
raphy (PSG) is the standard diagnostic test for OSA, using the
apnea-hypopnea index (AHI) to determine the severity of the
condition. An AHI of 5 or more events per hour indicates
OSA, while an AHI of 30 or more events per hour indicates
severe OSA [5]. However, PSG is a time-consuming and labor-
intensive process, as it involves placing multiple measures on
the patient, and it can be challenging to schedule appointments
with doctors. Furthermore, the laboratory setting and equip-
ment can interfere with the patient’s normal sleep, potentially
leading to inaccurate diagnoses. PSG is also inconvenient and
expensive for patients, leading to an estimated 24 million undi-
agnosed OSA cases in the US [6].

The speech signal has been proposed as a viable method
for early detection and severity evaluation of OSA [7]. Firstly,
speech acquisition in humans is linked to the appearance of
OSA from an anatomical perspective [8]. Secondly, the struc-
ture and function of the upper airway are key factors in OSA
pathophysiology. The intermittent hypoxemia, long-term snor-

ing, and upper airway collapse associated with OSA can affect
the structure and function of the upper airway [9], leading to
abnormal speech in OSA patients compared to healthy indi-
viduals. This can cause articulation, phonation, and resonance
anomalies. Theoretically, speech analysis is a faster, less expen-
sive, and more reliable means of predicting OSA.

Several research studies have indicated speech signals can
be an efficient and speedy method for diagnosing OSA. How-
ever, there were several limitations observed in these studies.
For example, [10] employed Chinese vowels and nasal sounds
as audio data, and they used a supported vector machine for
OSA detection. Similarly, [11] used Chinese syllables and de-
cision trees for classification, but the process also required ex-
tracting various types of hand-crafted acoustic features (e.g. fil-
ter banks) before inputting them into the classifier.

This paper proposes utilizing a pre-trained XLSR model
for detecting OSA in spoken sentences [12]. To capture the
difference in voices caused by a throat structure change be-
tween sitting and lying positions, ten utterances are recorded for
each patient in both positions with identical scripts. A Siamese
structure [13] with two identical encoders is used to encode the
speech of each position, revealing the difference. This approach
has several advantages. Firstly, it utilizes complete sentences
instead of individual phonemes and syllables, which is a more
natural and informative way of taking inputs. Secondly, our ap-
proach is end-to-end, reducing error propagation between dif-
ferent components in a modularized system and making it more
practical for deployment. Our model also uses raw waveform
as input features, allowing the model to learn features more
suitable for OSA detection than hand-crafted acoustic features.
Thirdly, pre-trained XLSR models are employed to leverage
the knowledge embedded in their representations obtained from
thousands of hours of data due to the limited training samples
available for OSA detection. Lastly, due to the unconstrained
feature setting of deep learning models, patient characteristic
features, such as age and body mass index (BMI), can easily
be incorporated into the model to leverage complementary in-
formation and enhance the model’s performance. Experimental
results on our in-house dataset validate the usefulness of the
pre-trained encoder, Siamese structure, and patient characteris-
tic features.

The rest of the paper is organised as follows. Sec. 2 reviews
foundation models and their medical uses. Sec. 3 presents our
proposed method. Secs. 4 and 5 are the experimental setup and
results. We conclude in Sec. 6.

2. Foundation models in Medical Practice
In medical diagnosis, pathological characteristics of patients
are used to determine if they have a disease. Similarly, super-
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vised learning models learn patterns between patient features
and disease labels to acquire medical knowledge. However, ma-
chine learning models, especially deep learning models, require
a large number of feature-label data pairs, which is challeng-
ing to obtain in the medical field. In the case of OSA detection,
polysomnography is needed to obtain the precise AHI value of a
patient, and it takes an entire night to complete. Due to the high
cost and time consumption, acquiring sufficient paired data for
model training is unfeasible.

Self-supervised learning has been a topic of interest in re-
cent years, with significant advances in various fields, including
speech and language processing. Self-supervised learning mod-
els in speech processing have the advantage of utilizing large
amounts of unlabelled speech data, which is abundant and eas-
ily accessible. One of the most promising areas of research in
self-supervised learning is the development of speech founda-
tion models. These models are pre-trained on large amounts of
unlabelled data and are then fine-tuned on specific speech tasks.
Speech foundation models can be used for various downstream
tasks, including speech recognition, speaker recognition, and
speech synthesis.

XLSR, introduced in 2020, is among the most widely used
speech foundation models [12, 14, 15, 16], and released a mul-
tilingual version pre-trained using 53 languages including Man-
darin. The model employs a contrastive learning approach,
where it is trained to distinguish between similar and dissimilar
speech data pairs. This approach has been highly effective, and
XLSR has achieved state-of-the-art results on numerous speech
recognition benchmarks [17]. Speech foundation models have
considerable value for various medical tasks related to speech,
including disease prediction and diagnosis. In the case of OSA
prediction, obtaining audio-AHI data pairs can be challenging.
Pre-trained speech models have already learned general speech
representations, and after fine-tuning with a small amount of
data, they can perform well.

3. Method
To predict the severity of a patient’s OSA symptoms, the same
script is read by a patient in both sitting and lying positions.
This is to leverage the clinical finding that the OSA patient’s
vocal tract shape changes more in different speaking positions.
Such a change influence the spectrograms of the whole utter-
ances as shown in Figure 1, and therefore requires an utterance-
level model, such as the XLSR. The OSA detection task is de-
signed to classify a subject into two categories based on a pre-
specified AHI threshold.

In order to handle the data sparsity issue caused by the small
amount of supervised OSA data when training a large deep-
learning model, a pre-trained XLSR model is used to leverage
a large amount of unsupervised data. The supervised OSA data
is then used in the fine-tuning stage. The raw audio waveform
is fed into the feature extractor as the input, which comprises
seven convolutional neural network (CNN) layers within the
pre-trained XLSR model. This enables the model to extract
features that are most suitable for OSA detection through joint
training. The features are then fed into the Transformer blocks
[18]. More details about the model specification can be found in
Section 4.2. A statistical pooling layer is used to aggregate the
sequence of XLSR-53 representations into a single vector. A
classification block is used following the XLSR model to clas-
sify the subject into one of the two classes. The cross-entropy
function is used as the training loss between the prediction and
the actual one-hot label.

Figure 1: Spectrograms of lying (upper) and sitting (lower) au-
dios spoken by a normal subject with AHI=2 (left) and an OSA
patient with AHI=37 (right). The bottom-right picture has more
energy in the higher frequency bands (sitting is yellower on top
than lying) since the patient suffers from a more obvious vocal
tract change when changing the speaking position.

3.1. Single network

In the simplest scenario, audios recorded in different positions
are not differentiated. The audio files associated with the same
subject are first concatenated, and a 6-second long audio seg-
ment is randomly selected from a concatenation of all utterances
recorded in each position during training. This model is able to
leverage any information within each 6-second segment but dif-
ficult to leverage the difference between sitting and lying speech
segments due to the constrained input audio length. Increasing
the input audio length does not result in better performance due
to the lack of training data.

3.2. Siamese network

A major issue of the single network method is the neglect of
the recordings taken in different positions. A medical study
[19] points out that OSA exhibits positional dependence, and
changes in body position have important implications for the
pathogenesis of OSA. As shown in Figure 1, compared to the
normal subject, the OSA patient has a more obvious energy dif-
ference in the higher-frequency bands between the sitting and
lying audio spectrograms. In order to highlight such a dif-
ference, the Siamese network differentiates between the audio
recordings taken in the two positions.

As shown in Figure 2, our Siamese network structure has
two identical XLSR encoders. For the audio pieces recorded
while the patient is sitting and lying, one side of the Siamese
network receives the sitting audio while the other receives the
lying audio. A 6-second audio segment is randomly selected
from a concatenation of all utterances recorded in each posi-
tion, and the random cutting positions for both sitting and lying
audios are identical to facilitate the differentiation of the two
audio segments. Afterwards, the two resulting representations
are concatenated. A classification block takes the concatenated
vector as input and transforms it into two fully connected layers
with ReLU activation functions. The final output vector is a 2-
dimensional distribution normalised using a softmax function.
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Figure 2: The Siamese network structure, where “Pooling”
refers to the temporal statistics pooling that converts a sequence
into its mean and standard deviation; “Fusion” refers to con-
catenation and a fully-connected layer.

3.3. Additional Patient Character Features

In addition to the speech recordings, the characteristics of the
patients are also collected, including age, BMI, and neck cir-
cumference (NC). Each type of such feature is normalized to
have a zero mean and unit variance across all patients. Dur-
ing training, a linear layer is utilized to transform each 1-
dimensional feature into a 16-dimensional one. As shown in
Figure 2, such additional features can be concatenated with the
audio features in the fusion block.

In order to avoid overfitting into these features, a feature-
level dropout with a rate of 0.5 is introduced, meaning that for
each model update, there is a 50% chance that the expanded
patient character feature is set as a 0 vector. Subsequently, a
classification block takes the concatenated feature vector as in-
put and returns a 2-dimensional vector.

3.4. Additional regression task

In previous sections, OSA detection is considered only as a bi-
nary classification task. This category is determined based on
the severity of the symptom of a patient. However, this ignores
the difference in AHI values of subjects in the same category,
which can be larger than those of some subjects belonging to
different categories. Therefore, in order to leverage the infor-
mation of the absolute AHI values, an additional regression task
can be included in the training, which helps the model to learn
the difference between patients belonging to the same category
but with different OSA severities. To prevent the regression loss
from becoming too large, the original AHI values ranging from
0 to 103 are linearly scaled into a range of [0, 1]. Apart from the
classification block, we build another regression block. Their
structures are almost the same, except the regression block has
output dimension 1 with sigmoid function for normalization at
the end. The total loss is the sum of cross entropy loss for clas-
sification and mean-square error (MSE) loss for regression.

3.5. Test method

During the test, a sliding-window-based method is used, where
the patient’s audio is divided into multiple segments using a
time window of 6 seconds and a moving length of 1 second.
For instance, the first segment is from 0 to 6 seconds, the sec-
ond is from 1 to 7 seconds, and so on. Each segment is input
into the model, which outputs the model’s judgement of the pa-
tient having OSA or not. If the portion of positive judgement
exceeds a certain threshold (set at 0.6 in this study), the patient
is predicted to have OSA.

4. Experimental Setup
4.1. Dataset

Obtaining PSG (polysomnography) data for Chinese citizens is
a challenging task due to its scarcity and sensitivity, making the
availability of a public dataset on this topic unfeasible. Thus,
in this study, we collaborated with Beijing Tongren Hospital
to collect data from 254 patients who were hospitalized due to
sleep snoring. All patients were Chinese males with an average
age of 39.6 years. For OSA (obstructive sleep apnea) diagnosis,
the AHI (apnea-hypopnea index) served as the gold standard,
with a threshold AHI = 30 events/h used to separate partici-
pants into groups. The objective of this study was to classify
patients based on their characteristics and predict whether their
AHI values were above or below 30. It is worth mentioning that
this study was conducted following the approval of the ethics
committee of Beijing Tongren Hospital.

To collect speech data, all patients were asked to read a
piece of Chinese text consisting of 10 sentences with decreasing
numbers of Chinese characters, while lying down and sitting up.
The speech signals were recorded at a sample rate of 16kHz.
Additionally, other patient characteristics, such as age, BMI,
and NC (neck circumference), were also collected.

The patient cohort was divided into training, validation, and
test sets, with corresponding sizes of 149, 30, and 75 patients,
respectively. To increase the size of the dataset, the training data
was augmented 16-fold and subjected to random cut method
during training. The model was trained for 50 epochs, and the
hyperparameters were optimized based on performance on the
validation set. The prediction results shown in this paper were
evaluated on the test set. All experiments were performed using
NVIDIA GTX 3090Ti GPUs.

4.2. Model details

For the task of OSA detection, we employ the use of the pre-
trained XLSR model [14], which is a multilingual version of the
Wav2vec 2.0 model [12]. The XLSR model was trained on the
November 2019 release of CommonVoice [20], which is a large
multilingual corpus of read speech, covering more than 2000
hours of audio in 38 languages, including Chinese. It should
be noted that this base model is only pre-trained on unlabelled
speech data, and thus, audio-AHI paired data will be used for
fine-tuning.

The audio model we adopt is composed of four main parts:
feature extraction, encoding, pooling and classification. The
feature extraction part splits the audio waveform into smaller
segments and employs convolutional neural networks (CNN) to
predict future frames for each segment. The encoder component
employs a transformer-based architecture. Our model follows
the structure of the large version of XLSR [14], which com-
prises 24 transformer blocks. For pooling, both mean pooling
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and standard deviation pooling are utilized to condense features
from various audio segments into a single feature representa-
tion. The classification block comprises of two linear layers
with a ReLU activation function in the middle.

5. Results
5.1. Pre-trained model vs randomly initialised model

We investigate the impact of inheriting pre-trained model pa-
rameters on the performance of the model in comparison to
randomly initialized model parameters, when training both the
encoder part and the classification block. Our experimental re-
sults, as summarized in Table 1, demonstrate that the F1 score is
0.700 for the model with inherited parameters, while it is 0.667
for the model with randomly initialized parameters. These find-
ings suggest that the pre-trained model parameters provide sig-
nificant advantages in terms of OSA detection, indicating that
the general speech knowledge learned by the pre-trained model
can greatly assist in this task.

5.2. Training the encoder or not

We aim to examine the influence of fine-tuning pre-trained
model parameters on OSA prediction, while considering differ-
ent training scenarios involving solely training the classification
block and training both the encoder part and the classification
block. Specifically, in the former scenario, we choose the block
from the encoder part with the best validation F1 score, which
in our case is the 14th block, as the feature output block. Our
results, as presented in Table 1, reveal that the F1 score is 0.700
for the encoder being trained, whereas it is 0.647 for the en-
coder not being trained. These findings indicate that fine-tuning
the pre-trained model can yield significant benefits in terms of
OSA prediction.

5.3. Using the single or Siamese network structure

We analyze the effect of the encoder network structure on OSA
prediction, by comparing the performance of Siamese and sin-
gle network structures when handling audio samples of sitting
and lying positions. Specifically, in the Siamese network struc-
ture, the audio samples of each patient’s sitting and lying posi-
tions are fed into separate halves of the network, whereas in the
single network structure, the distinction between sitting and ly-
ing audio is not made and both samples are sent to the network.
Our results, as presented in Table 1, demonstrate that the F1
score on the test set for the siamese network is superior to that
for the single network. These findings suggest that distinguish-
ing between sitting and lying speech can be helpful for accurate
OSA prediction.

Table 1: Classification results (F1 score) with audio features,
where “No fine-tuning” means not training the encoder part
with OSA labelled data; “No pre-training” means not using
parameters from pre-trained model. For both “Single network”
and “Siamese network”, we do fine-tuning and pre-training.

No fine-tuning No pre-training

0.647 0.667

Single network Siamese network

0.679 0.700

5.4. Additional patient characteristic features

Various patient characteristics can have varying impacts on the
detection of OSA. As evidenced by the data presented in Ta-
ble 2, Neck Circumference (NC) plays a beneficial role in de-
tecting OSA. Moreover, by integrating all characteristics jointly,
the model learns to discriminate among characteristics, leading
to a performance that is deemed satisfactory.

Table 2: Classification results (F1 score) with different addi-
tional characteristics of patients. For instance, “Age” indicates
combining audio and age characteristics to detect OSA.

None Age BMI NC All

0.700 0.674 0.660 0.706 0.707

5.5. Additional regression task

We assess whether the inclusion of a regression task to predict
the AHI value would aid in the classification of OSA in the test
set. To improve the performance of the model, we divided the
MSE loss for the regression task by a factor of 2. The results
presented in Table 3 demonstrate that incorporating the regres-
sion task during training of the Siamese network led to a notable
improvement in the F1 score, from 0.700 to 0.708.

5.6. Combination of characteristics and regression

As detailed in Section 5.4 and Section 5.5, the inclusion of pa-
tient characteristics and a regression task has proven to enhance
the performance of the model. It is therefore reasonable to ex-
plore the integration of these two methods. Based on the find-
ings presented in Table 2, we selected NC as the patient charac-
teristic to incorporate. The results reported in Table 3 indicate
that the model utilizing both NC and regression yielded an F1
score of 0.725, surpassing the performance of all other models.

Table 3: Classification results (F1 score) with/without the re-
gression task or NC characteristic. “Baseline” means model
without regression or NC.

Baseline Regression NC Regression and NC

0.700 0.708 0.706 0.725

6. Conclusions
In this paper, we present a novel method for OSA detection,
which is a binary classifier built on XLSR, a pre-trained speech
foundation model. The end-to-end nature of our approach
makes it easy to scale up and deploy in real-world applica-
tions. Our experimental results verify the effectiveness of utiliz-
ing pre-trained representations for OSA detection. It is demon-
strated that the Siamese network structure outperforms the sin-
gle network structure by leveraging the differences between au-
dio spoken in sitting and lying positions. Moreover, combining
patient characteristic features with audio features and training
with an additional AHI regression task can further enhance the
model’s performance. This preliminary study demonstrates the
potential for AI-assisted OSA diagnosis. As further progress
can be anticipated by collecting more data and employing more
advanced speech foundation models. Our future work includes
achieving multimodal diagnosis using visual features such as
oral cavity images.
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