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Abstract
This paper presents a novel multi-task learning framework
by introducing self-supervised phonetic information for deep
speaker embedding extraction. The primary task is still to
classify speakers, but we consider an auxiliary task to identify
phoneme boundaries in speech signals following the Noise Con-
trastive Estimation principle. To further utilize self-supervised
information to assist speaker feature learning, the features of
intermediate layers in the main task are refined by the features
of corresponding layers in the auxiliary task through masking
and biasing operations. We use the VoxCeleb1 and CN-Celeb
datasets for performance evaluation, which consistently verifies
the efficacy of the proposed method.
Index Terms: speaker verification, self-supervised learning,
multi-task learning, noise contrastive estimation

1. Introduction
Speaker verification (SV) aims to verify a person’s identity us-
ing speech/voice signals. There are two types of speaker veri-
fication: text-dependent and text-independent SV [1]. The lat-
ter has been widely used since it does not require the speaker
to use a particular passphrase, and this paper focuses on text-
independent SV. In the past decade, deep neural networks
(DNN) based method, known as x-vector [2], has become the
mainstream approach in the text-independent SV. Various archi-
tectures, including the time-delay neural network (TDNN) [3],
the convolutional neural network (CNN) [4], and the ResNet
[5, 6, 7], have been successfully applied to different SV tasks.

In principle, speech signals implicitly contain speaker traits
and phonetic contents [8, 9]. The mixing of two kinds of in-
formation has a significant influence on SV research. Numer-
ous researchers have recently attempted to use phonetic con-
tent information in the field of SV. Multi-task learning (MTL)
based deep neural networks are used to implement state-of-the-
art research in this area [9, 10, 11]. In [9], phonetic vectors
generated from the additionally constructed ASR branch, are
connected to an x-vector network. In [10], a phoneme-aware
attention pooling method is proposed to better capture long-
term variations in speaker characteristics. In [11], a phonetic
attention mask (PAM) is applied to dynamically assign weights
produced by the digit recognition branch to speaker features.
Most of the above methods performed joint training of speaker
classification and phonetic content-related auxiliary tasks un-
der supervision, by introducing phonetic information into the
deep layer of the speaker network to help obtain speaker clues.
However, phoneme recognizer consumes many computing re-
sources and may generate inaccurate labels due to the mismatch
between training and testing scenarios. In addition, in the field
of SV, datasets containing both transcripts of contents and the

speaker’s identity are scarce. Using two distinct datasets for
alternate training may lead to suboptimal results in speaker em-
bedding learning.

Unsupervised or self-supervised learning (SSL) methods
are viable alternatives when supervised training data is scarce.
Recently, SSL has shown promissing results in speech pro-
cessing, especially in automatic speech recognition (ASR)
[12, 13, 14]. The pre-trained models trained with SSL, such
as Wav2vec2.0 and WavLM [15], have been successfully ap-
plied to different downstream speech tasks. Contrastive learn-
ing [16] is commonly-used in SSL. In wav2vec2.0 [13], the po-
tential representation is distinguished from distractors through
the contrastive loss, for learning effective speech representation.
In [17], Noise Contrastive Estimation (NCE) loss is applied to
distinguish between pairs of adjacent frames and random non-
adjacent frames for identifying spectral changes on an unsuper-
vised phoneme boundary detection task.

Although self-supervised approaches liberate the acquisi-
tion of labels, their performance still cannot match with super-
vised models if they do not include supervised training or fine-
tuning. This paper focuses on obtaining deep discriminative
speaker embedding with joint supervised and self-supervised
learning from scratch using the database with only speaker la-
bels. The proposed network has two branches with almost
the same architecture. One branch is used to classify speak-
ers with supervised learning, and the other is used to identify
spectral changes in the signal using the NCE loss. With the
NCE loss, the auxiliary task can learn phonetic information in
a self-supervised way. In order to enhance the deep speaker
embedding extraction with the auxiliary self-supervised infor-
mation, the features of intermediate layers within the main task
are refined by the features of the corresponding layers in the
auxiliary task through multiplying and biasing operations. We
carry out experiments on the VoxCeleb1 and CN-Celeb datasets.
Compared with the baseline system, the proposed system can
achieve a consistent performance improvement.

The remainder of this paper is organized as follows. The x-
vector baseline system is illustrated in Section 2. The proposed
method is presented in Section 3. Sections 4 and 5 present the
experimental setup, results, and analysis, respectively. Finally,
conclusions are given in Section 6.

2. Baseline system
The detailed configuration of our baseline is shown in Table 1.
It uses the Resnet34 backbone [18] to extract speaker represen-
tations at the frame level. The input acoustic feature first passes
through a convolutional layer with a kernel size of 7×7 and a
stride of 2×2. The four residual stages include repeated stack-
ing of 3×3 convolution kernels, and the number of channels
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Table 1: The ResNet34 baseline structure.

Layer name Structure Output size
Conv 0 7 × 7, 32, stride 2 T⁄2 × 32 × 32

Conv1 x
[
3× 3 32
3× 3 32

]
× 3 T⁄2 × 32 × 32

Conv2 x
[
3× 3 64
3× 3 64

]
× 4 T⁄2 × 16 × 64

Conv3 x
[
3× 3 128
3× 3 128

]
× 6 T⁄2 × 8 × 128

Conv4 x
[
3× 3 256
3× 3 256

]
× 3 T⁄2 × 4 × 256

statistic pooling& 2 fully connected layers, AM-Softmax

is set to 32, 64, 128, and 256, respectively. Down-sampling
is only performed in the first block of each residual stage with
a stride of 1×2. Afterward, the statistics pooling layer con-
verts the frame-level features into a fixed-length utterance-level
speaker representation. The utterance-level features are trans-
formed into speaker embeddings by two fully connected layers.
Finally, the classification solution is given by the AM-Softmax
[19] output layer.

3. Proposed method
As depicted in Figure 1, the proposed network adopts a Dual-
Branch structure with the auxiliary information control mod-
ule (ICM), termed by DBICM in this work. DBICM mainly
comprises three modules: the main-task speaker-classification
branch based on the conventional ResNet34 architecture, the
auxiliary-task self-supervised learning branch using the cloned
architecture of the main task except for some top layers, and the
layer-wise ICM between the two branches.

The dual branches encode the speaker and phonetic con-
tent features through the AM-Softmax and the NCE losses, re-
spectively. As we know, the bottom layers of deep neural net-
works model the low-level information, and the top layers ex-
tract high-level information. For simplicity, we share the first
stage of ResNet34 between the two tasks since they both ex-
tract similar low-level information from acoustic features. The
two branches’ top stages of the ResNet34 extract complemen-
tary information. The output features from the auxiliary task are
transformed in ICM, which is used to refine the features of the
main task’s corresponding layers through masking and biasing
operations.

3.1. The auxillary self-supervised task

As mentioned above, SSL can learn effective speech signal rep-
resentations without requiring transcriptions of the training set.
To balance the performance and requirement of computing re-
sources, we adopt a relatively simple SSL training scheme,
which was shown to be effective on unsupervised phoneme
boundary detection [17, 20]. The NCE loss is widely used for
SSL. In this work, NCE is applied by comparing the similarity
between adjacent and non-adjacent frames of utterances. We
can learn contextual, especially phonetic, information from this
meticulously crafted loss function.

We use a similar ResNet34 structure in the main task to
implement the layer-wise ICM in this work. To obtain the la-
tent speech representations, we add a transform layer to the
final stage of ResNet34 in the SSL branch. Through the up-
sampling and flattening operations in the transform layer, the

Figure 1: The proposed ResNet34 structure with dual branches
and information control module (DBICM).

feature map’s dimension is changed to 2D, and the time axis
size is restored to T :

Z = Transform(H) = Flatten(Upsampling(H)), (1)

where Z = (z1,z2 . . .zT ) ∈ RT×G represents the latent
speech representations of the SSL branch. T and G represent
the number of frames and the feature dimension, respectively.
H ∈ RT/2×F×C denotes the feature map output by the last
residual stage. F and C respectively denote the frequency and
channel dimensions.

The contrastive loss can be formulated for each latent
speech representation feature zi ∈ RG, given by:

Lc (zi) = − log
esim(zi,zi+1)

∑
zj∈{zi+1}∪DK(zi)

esim(zi,zj)
, (2)

where DK (zi) represents a set of K non-adjacent frames of
zi. The positive sample pair (zi,zi+1) and negative sample
pair (zi,zj), zj ∈ DK (zi), respectively, represent frames
that are adjacent to the current frame and frames that are not
adjacent to it. Calculating the cosine value, sim (zi,zj) =
zT
i zj/∥zi∥∥zj∥, yields the similarity between two vectors.

The total NCE loss function is then given by:

Lc =
1

NT

∑

N

∑

T

Lc (zi) , (3)

where N denotes the total number of features in training.

3.2. Information control module (ICM)

Since the two branches in DBICM have similar structures but
different training objectives, the SSL branch can provide com-
plementary information for speaker feature learning on the main
branch. To refine the feature maps of the main branch at stage
2/3/4, we design layer-wise ICMs, see Figure 1.
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Figure 2: The Structure of ICM.

As shown in Figure 2, ICM dynamically generates two sets
of parameters, wl and bl, to calibrate the feature maps of the lth

stage on the main branch through masking and biasing opera-
tions, which are calculated as:

wl = 1− σ
(
Conv 2D

(
Hl

))
, (4)

bl = 1− Conv 2D
(
Hl

)
, (5)

H̃l
s =

(
Hl

s ⊗ wl
)
⊕ bl, (6)

where Hl
s and H̃l

s denote the feature maps of the lth stage on
the main branch before and after calibration, and Hl are the fea-
tures of the corresponding stage on the SSL branch. Conv2D
denotes 2D CNN, which uses a 1×1 convolution kernel. Ad-
ditionally, σ(.) denotes the sigmoid function, and the element-
wise multiplication and addition are represented by ⊗ and ⊕.

3.3. Overall loss function

In combination with the original speaker classification loss, the
final loss function can be written as:

L = Lspk + λcLc, (7)

where Lspk and Lc denote the AM-Softmax loss for speaker
classification and the contrastive loss for SSL, respectively. λc

is the hyper-parameter.

4. Experimental Setups
4.1. Datasets and Evaluation Indicators

VoxCeleb1 [21] and CN-Celeb [22, 23] are used throughout
experiments. VoxCeleb1 contains over 100,000 utterances for
1,251 celebrities, extracted from online videos. The speakers
vary in professions, ages, ethnicities, and accents. In the ex-
periments, the development part of Voxceleb1 is used as the
training dataset, which contains 148,642 utterances from 1,211
speakers. There are 40 speakers and 4,874 utterances in the
Voxceleb1 test part. The CN-Celeb corpus contains speeches
by Chinese celebrities. The entire dataset is divided into CN-
Celeb.T and CNC-Eval: the former is used for training, consist-
ing of 632,736 utterances from 2,793 speakers, 1285 hours in
total, the latter is used as the test set.

Considering the databases are established in complex
acoustic environments with background noise, far-field, and ir-

regular durations, we also evaluate the necessity of data aug-
mentation for comparison. Augmented data with reverb, noise,
music, and babble are used to increase the diversity of the train-
ing data.

The system’s performance evaluation metrics are the equal
error rate (EER) and the minimum cost detection function
(minDCF) with a prior target probability Ptar of 0.01.

4.2. Implementation details

The experiments use 64-dimensional log-mel filter-bank
(Fbank) energy features as acoustic features. In addition, all
the features are processed with mean normalization and energy-
based voice active detection (VAD) over a 3-second sliding win-
dow. In the training set, Voxceleb1 and CN-Celeb utterances
are randomly cropped to lengths of 2-4 s. 64 utterances with
the same duration are assigned to the same mini-batch.

All models are built using the Tensorflow toolkit [24]. Kaldi
Toolkit [25] is used for, e.g., data processing, feature extraction,
and the PLDA [26] backend. The network is optimized using
the Adam optimizer, and the learning rate gradually decreases
from 1e-3 to 1e-4. The AM-softmax [19] is used as the loss
function for speaker classification, and the margin m and scal-
ing factor s are set to 0.15 and 30, respectively. We build three
systems for comparison, and the configurations of each system
are listed as follows:

Baseline: ResNet34 structure with AM-Softmax loss.
DB-Phone: Multi-task learning framework with supervised

phoneme classification as an auxiliary task. The “FisherMono”
model of the BUT phoneme recognizer [27], which is indepen-
dent of the multi-task network training process, is employed for
phoneme label recognition of each speech frame. The frame-
level network of two branches is the same as the baseline, shar-
ing the layers in the first residual stage and before. For the auxil-
iary branch, the feature Z in Equation 1 output by the transform
layer passes through the Softmax layer is used to calculate the
cross-entropy loss with corresponding phoneme labels.

DBICM: The proposed structure in this paper, i.e. the
ResNet34 network with dual branches and information control
module for calibrating the feature maps of the speaker classi-
fication branch, as shown in Figure 1. ICM is employed after
each residual stage. In the SSL branch, the number of negative
samples in Equation 2 is set as K = 3. Comparing the DBICM
and DB-Phone systems, the number of model parameters is ap-
proximately similar.

Figure 3: The Results of DBICM on VoxCeleb and CN-Celeb
datasets with Different λc.
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Table 2: Speaker verification results on the VoxCeleb datasets
with different systems.

System
Data
Aug

VoxCeleb
EER% minDCF

Baseline
×

3.934 0.3882
DB-Phone 3.712 0.4186
DBICM 3.388 0.3559
Baseline

✓
3.388 0.3525

DB-Phone 3.102 0.3384
DBICM 2.911 0.2959

SLA-DV [28] ✓ 3.747 0.3658
AM-PPL [29] 3.321 0.3234

Table 3: Speaker verification results on the CN-Celeb datasets
with different systems.

System
Data
Aug

CN-Celeb
EER% minDCF

Baseline
✓

9.107 0.4951
DB-Phone 8.910 0.4971
DBICM 8.522 0.4657

5. Result
5.1. Hyper-parameter selection

In Equation 7, the hyper-parameter λc regulates the proportion
of main and auxiliary tasks. We evaluate the impact of differ-
ent λc, and the experimental results are depicted in Figure 3.
When λc equals 0.6 or 0.8, the system achieves the best perfor-
mance on VoxCeleb1 or CN-Celeb. Unless otherwise specified,
we will keep this choice of hyper-parameter for the proposed
DBICM system in the sequel.

5.2. Performance of different systems

Then, we compare the proposed DBICM with comparison sys-
tems and several recent approaches. On VoxCeleb1, DB-Phone
and DBICM, two MTL methods, can improve over the base-
line, as shown in Table 2. This demonstrates that the usage of
auxiliary information in SV is effective. The proposed DBICM
outperforms the other two comparison systems on EER and
minDCF metrics, regardless of the inclusion of data augmenta-
tion. This is due to the fact that the SSL branch can effectively
introduce the phonetic information to help speaker extraction,
while the inaccurate labels recognized by the phoneme recog-
nizer in DB-Phone affect the robustness of the SV.

We also list the results of two recent experiments combin-
ing phonetic information into SV. In [28], the maximum mean
difference loss is utilized to alleviate the mismatch between the
speaker and phoneme subnetworks. [29] adopts a multi-task
learning approach to build an auxiliary branch with the pseudo-
phoneme label loss. We directly cite the published results. The
proposed DBICM outperforms these two methods. When data
augmentation is used, the proposed DBICM achieves the best
results with an EER of 2.911% and minDCF of 0.2959. Com-
pared with the baseline, we can obtain a 14.1% and 16.1% re-
duction in EER and minDCF metrics, respectively.

Furthermore, we conduct experiments on CN-Celeb to
demonstrate the robustness and generalization ability of the pro-
posed DBICM algorithm. For simplicity, we only list results
with data augmentation in Table 3. The proposed DBICM can
also achieve consistent improvements on the CN-Celeb dataset.

Table 4: Effects of different operators in ICM, where ” w/o ”
means ”without”.

System
VoxCeleb CN-Celeb

EER% minDCF EER% minDCF
DBICM 2.911 0.2959 8.522 0.4657

w/o Biasing 3.028 0.3068 8.859 0.4744
w/o Masking 3.102 0.3174 8.865 0.4812

w/o Biasing & Masking 3.298 0.3215 9.006 0.4931

However, due to its more complex scenarios and the domain
mismatch issue, the performance improvement on CN-Celeb is
smaller than that on VoxCeleb1.
5.3. Evaluating the different operators in ICM

As shown in Equation 6, the masking and biasing operators are
the two operators in ICM. Therefore, we examine the individual
effect by removing them separately. The results are shown in
Table 4, where the performance of the complete DBICM system
is also shown in the first row. Note that the system with the
removal of both operations is still a multi-task framework.

As shown in Table 4, removing any operator results in no-
ticeable performance degradation, implying the necessity of the
operators in ICM. Furthermore, removing the masking opera-
tor results in a more significant performance drop than the other
case, indicating that the multiplication operation plays a more
important role in the ICM.

Table 5: Results of applying ICM at different stages.

Stage
VoxCeleb CN-Celeb

EER% minDCF EER% minDCF
2nd 3.287 0.3599 9.333 0.4879
3rd 3.070 0.3458 9.017 0.4818
4th 2.975 0.3160 8.634 0.4707

2,3,4 2.911 0.2959 8.522 0.4657

5.4. Applying ICM at different stages of ResNet

As ResNet34 consists of four residual stages with distinct fea-
ture dimensions, we evaluate the effect of applying ICM to dif-
ferent stages. Specifically, we apply ICM to the second, third,
and fourth residual stages of the ResNet backbone. The results
of DBICM with data augmentation are listed in Table 5.

In the deeper stages of the two branches, the features have
higher-level information, which can provide more complemen-
tary information for speaker characteristics modeling. Finally,
applying the ICM to all three residual stages can obtain the best
result. A reasonable explanation is that different stages can pro-
vide different levels of information.

6. Conclusions
In this paper, we proposed a novel MTL framework to learn
robust deep speaker embedding, where the SSL is used as an
auxiliary task. In addition, information from the auxiliary task
is used to calibrate the deep features of the main task branch
using ICM modules. Experiments on Voxceleb1 and CN-Celeb
prove that the proposed method can consistently improve the
speaker verification system.
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