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Abstract
In this paper, we present a robust prototype learning framework
for anomalous sound detection (ASD), where prototypical loss
is exploited to measure the similarity between samples and pro-
totypes. We show that existing generative and discriminative
based ASD methods can be unified into this framework from
the perspective of prototypical learning. For ASD in recent
DCASE challenges, extensions related to imbalanced learning
are proposed to improve the robustness of prototypes learned
from source and target domains. Specifically, balanced sam-
pling and multiple-prototype expansion (MPE) strategies are
proposed to address imbalances across attributes of source and
target domains. Furthermore, a novel negative-prototype ex-
pansion (NPE) method is used to construct pseudo-anomalies
to learn a more compact and effective embedding space for nor-
mal sounds. Evaluation on the DCASE2022 Task2 develop-
ment dataset demonstrates the validity of the proposed proto-
type learning framework.
Index Terms: anomalous sound detection, prototype learning,
imbalanced learning

1. Introduction
In recent DCASE challenges1, anomalous sound detec-
tion (ASD) is defined as a task that determines whether a ma-
chine is behaving abnormally or not through an analysis of its
sound. The application is automatic monitoring of machine
conditions. This task is challenging since anomalies rarely oc-
cur and are highly diverse, especially in the case of domain
shifted conditions where factors such as environmental noise
or operational conditions often differ between training and test
phases [1, 2, 3].

Conventional ASD systems exploit generative meth-
ods including AutoEncoder (AE) [1, 4], Gaussian Mixture
Model (GMM) [5] and WavNet [6] to model the distribution
of normal data in an unsupervised way. Recent discriminative-
based methods, such as MobileNetV2 [2, 3], ResNet [7, 8],
and STgram-MFN [9], were proposed to learn effective em-
beddings with deep neural networks (DNNs). With the help
of label information (e.g. machine-IDs, sections or attributes),
they can learn more compact and effective sound clip embed-
dings than the generative ones, achieving promising ASD per-
formance [1, 2, 3].

It was shown in [10] that AEs act similarly to k-means and
Principal Component Analysis (PCA), with an encoder map-
ping an input to a latent embedding space, and a decoder recon-
structing the input. The encoder can be implicitly considered as
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prototypes (i.e. centres in k-means), a description of the distri-
bution of the normal input data. For discriminative-based meth-
ods, a classification loss function (e.g. softmax cross-entropy
loss) is employed to optimize the similarity between samples
and weighted vectors, i.e. prototypes of each class. From this
perspective, it is crucial to learn effective prototypes in both
generative and discriminative based ASD systems.

For more challenging domain generalization (DG) ASD
tasks in DCASE 2022, several domain-classification-based ap-
proaches were reported in the literature [11, 12]. In the for-
mer, a multi-task learning framework was proposed to disen-
tangle domain-shared and domain-specific features for domain
generalization in ASD. In [8], a pre-trained source-domain net-
work was further fine-tuned with a few samples from the tar-
get domain. Additionally, several domain-mixing-based ap-
proaches [13, 14, 15] that exploit data augmentation methods
like Mixup [16] or SpecAugment [17] were explored. These
aim to synthesize more target domain samples to improve the
generalization capability of the learned model. However, since
source and target domain attributes are non-overlapping and
highly imbalanced, it is still difficult to address domain gen-
eralization and class imbalance issues simultaneously [11, 12].
Domain-mixing-based methods [13, 14, 15] may suffer from
inaccurate synthesized data, where the synthesis may not nec-
essarily follow the distribution of normal data [3].

In this paper, we first present a unified deep neural network
framework to learn effective and high quality prototypes, as il-
lustrated in Fig. 1. Prototypical loss is exploited for network
optimization by measuring the similarity between samples and
the prototype representation of each class. We then extend the
framework to address the DCASE 2022 ASD task by casting
domain generalization as imbalanced learning from both source
and target domains, to improve the robustness of learned proto-
types. It is worth noting that this framework can learn a unified
embedding space, enabling the same threshold regardless of the
domain. Specifically, multiple-prototype expansion (MPE) and
balanced sampling strategies are proposed to address the im-
balance across non-overlapping attributes of source and target
domains. Furthermore, from the perspective of outlier expo-
sure [18], a novel negative-prototype expansion (NPE) strategy
is proposed. We apply Mixup [16] between anchor and negative
prototypes to construct pseudo-anomalies to learn a more com-
pact and effective embedding space from normal data. This dif-
fers from domain-mixing-based methods [13, 14, 15] that treat
the augmented samples as normal.

To evaluate the effectiveness of the proposed prototype
learning framework, extensive experiments on the DCASE2022
Task2 development dataset reveal its excellent performance for
general ASD tasks and demonstrate the flexibility to adapt well
to specific tasks.
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Figure 1: An overview of the proposed unified prototype learning framework. All training data is sampled randomly to train the feature
extractor with the constraint of prototypical loss. The dotted line is implemented before each epoch to obtain prototypes. In embedding
space, the anchor is pulled closer to the corresponding prototype and pushed further away from other prototypes, aiming to yield more
effective and compact feature representations.

2. Unified prototype learning framework
As aforementioned, existing ASD methods, both generative and
discriminative, can be formulated as tasks that learn prototypi-
cal representations from normal samples. From this perspective,
we propose a unified prototype learning framework, as shown
in Fig. 1. It consists of a feature extractor fθ parameterized with
θ, and a prototype learner using prototypical loss.

Let X = {(x1, y1), · · · , (xn, yn)} denote the training set
and Y = {1, · · · , C} is the corresponding attribute label space.
Sc denotes a set of all training samples labeled with attribute
c. First, we use all available normal data to train feature ex-
tractor fθ by randomly sampling from X . The model fθ maps
each input sample x into a fixed dimension embedding vector z
with unit length. In the prototype learner, the prototypical loss
is exploited to optimize feature extractor fθ by calculating the
distances between prototypes and embeddings, that is,

LPL = − log
exp(zi · pi/τ)∑C
c=1 exp(zi · pc/τ)

(1)

where τ is a temperature hyper-parameter and pi is the attribute
prototype of zi, which is calculated as follows:

pc =
1

|Sc|
∑

xi∈Sc

fθ(xi) (2)

Note that pc also requires to be normalized.
From the perspective of outlier exposure [18], the frame-

work treats sounds from different attributes as pseudo anoma-
lies. In contrast to calculating centres specifically for infer-
ence [8], our framework directly utilizes prototypes to optimize
the model, which alleviates the inconsistency between training
and testing. Besides, our proposed framework is convenient to
manage and modify for specific ASD tasks.

For domain generalization in ASD, it is crucial to learn ef-
fective prototypes for the source and target domains. However,
the learned prototypes are often not robust enough due to the im-
balance between the domains. To address this issue, we propose
imbalanced learning strategies and anomaly simulation methods
to extend our prototype learning framework.

3. Robust prototype learning
In this section, the extensions related to domain generalization
are described in detail, including imbalanced learning strate-
gies (i.e. balanced sampling and MPE) and an anomaly simula-
tion method called NPE.

3.1. Imbalanced learning

3.1.1. Multiple-prototype expansion (MPE)

The multiple-prototype expansion (MPE) is presented to gener-
ate sub-prototypes for learning more effective feature represen-
tation, as shown in Fig. 2(a). For a given set Sc, we randomly
select m% samples to form a new subset S̃c and calculate sub-
prototypes p̃c in terms of Eqn. (2). After collecting prototypes
p and sub-prototypes p̃, for an arbitrary anchor zi, multiple pro-
totypes are available. Applying the MPE in prototype learner,
we update Eqn. (1) to satisfy the multi-prototype situation ac-
cording to supervised contrastive learning [19],

LPL-MPE = − 1

|P̂c|
∑

pc∈P̂c

log
exp(zi · pc/τ)∑

pa∈P̂ exp(zi · pa/τ)
(3)

where P̂ consists of all p and p̃, and P̂c is the set of multi-
prototypes corresponding to zi.

Based on the concept of sub-sampling, the MPE can gener-
ate diverse indicative information to guide representation learn-
ing effectively. More diverse prototypes are beneficial to reduce
intra-class variations, especially for the source domain with a
large number of training samples. Furthermore, analyzing the
construction of subsets S̃c, training data from the target domain
is sampled repeatedly due to its size limitation. This operation
essentially over-samples the target domain to help alleviate the
effect of an imbalance between the two domains.

3.1.2. Balanced sampling

Random sampling adopted in the unified prototype learning
framework treats all data in X equally, leading to insufficient
optimization for the target domain, and overfitting for the source
domain. Therefore, we extend the idea of sub-sampling to the
input space and propose a balanced sampling strategy to re-
balance attribute classes in both domains.

During training, a subset Ỹ , composed of N attributes, is
sampled from attribute space Y , and then the mini-batch is col-
lected according to Ỹ . For the source domain, a subset S̃c com-
posed of K training data can be directly constructed by random
sampling from Sc. For the target domain, K samples are ob-
tained by RandomCrop due to limited sample numbers.

After balanced sampling, the mini-batch is exploited to op-
timize the feature extractor. Unlike the unified prototype learn-
ing framework, prototype pc is calculated by replacing Sc with
subset S̃c in Eqn. (2), which allows the prototypes to be updated
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Figure 2: Illustration of our proposed two expansion modules.
(a) Multiple-prototype expansion (MPE) takes the average vec-
tor of a subset from the given attribute to obtain sub-prototypes,
aiming to promote the diversity of prototypes and reduce intra-
class variations. (b) Negative-prototype expansion (NPE) per-
forms linear interpolation on the connection between anchor
embedding and other attribute prototypes to generate pseudo-
anomalies, resulting in improved inter-class separability.

before each iteration. The total loss for balanced sampling is,

L =
1

N ×K
∑

N

∑

K

LPL (4)

As in [20], the balanced label space is first sampled so that
the source and target domains can be trained in a re-balanced
manner. Essentially, this addresses the imbalance issue by
under-sampling source domain data. The balanced sampling
strategy allows limited samples from the target domain to suf-
ficiently optimize the model, resulting in a more efficient rep-
resentation of the target domain. In addition, when balanced
sampling is adopted in our experiments, LPL is modified due to
the introduction of the NPE described in Sec. 3.2.

3.2. Anomaly simulation

In the later stages of training, discrepancies tend to form among
every attribute, lacking hard enough negative examples to opti-
mize the model further. Inspired by [21], we propose negative-
prototype expansion (NPE) to synthesize pseudo-anomalies to
improve the representation learning.

As shown in Fig. 2(b), given an anchor and all prototypes
obtained from a mini-batch, more negative pseudo-anomalies
are generated by linear interpolation between the anchor and
other prototypes. As in [16], the synthesis of pseudo-anomalies
is formalized as:

ẑi = λza + (1− λ)pi (5)

where, za is the embedding of selected anchor with attribute
label c and pi is the prototype of the other class, i.e. i 6= c.
λ is the mixing coefficient, which follows a uniform distribu-
tion. Once more pseudo-anomalies are generated, the prototyp-
ical loss in Eqn. (1) is updated to,

LPL-NPE = − log
exp(za · pc/τ)∑

i

exp(za · pi/τ) +
∑
j,j 6=c

exp(za · ẑj/τ)
(6)

where all generated vectors ẑ are considered as negatives, i.e.
simulated anomalies. Analyzing Eqn. (6), the synthesis of
pseudo-anomalies is equivalent to adding a margin between the
different classes, causing more discriminative representations to
be learned.

4. Experiments and results
4.1. Dataset

We conducted extensive experiments on the DCASE2022 Chal-
lenge Task2 development dataset that is composed of a subset
of ToyADMOS2 [22] and MIMII DG [23] dataset. Each sample
is a single-channel, 10-second audio clip. Seven machine types
are recorded, with data from each machine type divided into
three sections. For each section in training set, there are 990
clips of normal samples in the source domain, but only around
10 normal sounds from the target domain are available. The test
set provides 50 clips of normal and anomalous samples in the
source and target domains, respectively. Each sound is labeled
with attribute information according to various conditions (e.g.
voltage, velocity or factory noise, etc.) and the specific num-
ber of attributes are presented as machine type(source domain,
target domain) as follows: ToyCar(9,12), ToyTrain(9,12), Bear-
ing(17,13), Fan(6,5), Gearbox(13,13), Slider(12,9), Valve(9,8).
Note that there are no shared attributes between the source and
target domains, so they have 75 and 72 attributes, respectively.

4.2. Implementation details

We extract the inverted log-Mel spectrogram [24], which em-
phasizes the high-frequency region, as input features. In detail,
128 inverted Mel filters are used with a window size of 1024
and hop size of 512 for all 16kHz sample rate input clips.

In experiments, we apply the unified prototype framework
with MPE to pre-train the feature extractor. Then, balanced
sampling and NPE are utilized to fine-tune the model. The fea-
ture extractor fθ follows our previous work [8], which adopts
ResNet18 with Time-Frequency Attention Pooling. In both
stages, 64 frames are randomly cropped from the input feature,
and the model is optimized by SGD with momentum of 0.9 and
weight decay of 5e-5. During pre-training, the model is trained
for 120 epochs with a step-based decaying learning rate (i.e.
0.1×50 epochs, 0.01×40 epochs, 0.001×30 epochs) and mini-
batch of 32. During fine-tuning, we construct a mini-batch with
N = 10 and K = 10 to optimize the model over 50 epochs.
An initial learning rate of 0.01 is set during the first 30 epochs,
declining to 0.001 for the remaining 20 epochs. All temperature
factors τ in the loss functions are set to 0.07.

During testing, attribute prototypes from both domains are
utilized together to calculate the anomaly score. For each test
sound clip, the Mahalanobis distance is found between the test
embedding and the prototypes of all attributes in the corre-
sponding section. The minimum distance is the anomaly score.
Following [12], the covariance matrix is calculated from all sec-
tion embeddings without distinguishing domains.

Three standard metrics evaluate ASD performance: the
source AUC and target AUC that are calculated by comparing
the normal test samples from a given domain against anomalies
from both domains, along with pAUC computed over test sam-
ples from all domains, where pAUC is calculated as the AUC
over a low false-positive-rate (FPR) range [0, 0.1].

4.3. Results

We compare the proposed methods with previous systems and
present the performance metrics in Table 1. The baseline sys-
tem adopts a self-supervised framework [8] to recognize all at-
tributes. Besides this, we also present the results of each train-
ing stage to verify the effectiveness of our unified framework,
where ‘Fine-tune (w/o pre-train)’ denotes that fine-tuning is per-
formed from scratch instead of the pre-trained model.
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Table 1: The harmonic mean of three evaluation metrics for each machine type obtained from different methods. The source AUC (%),
target AUC (%), and pAUC (%) are harmonic mean across all machine types for each of the three metrics. The overall refers to the
harmonic mean of all metrics.

Methods ToyCar ToyTrain Bearing Fan Gearbox Slider Valve Source AUC Target AUC pAUC Overall
AutoEncoder [3] 51.30 39.77 60.64 58.50 63.07 58.00 50.60 70.55 42.27 54.51 53.40
MobileNetV2 [3] 54.40 51.55 60.64 57.53 60.17 51.68 62.13 64.61 50.98 55.77 56.58
Baseline 74.67 58.68 67.84 57.20 74.30 80.12 90.45 78.78 69.45 64.04 70.25
STgram-MFN [9] 68.38 62.25 59.54 63.36 62.75 73.84 60.44 71.21 64.32 57.97 64.05
DG-mix [14] 79.80 53.70 70.70 76.60 80.28 75.11 79.13 77.55 74.08 66.34 72.35
Disent Wt [11] 76.95 59.74 72.07 63.91 81.38 85.14 94.50 86.09 71.65 68.21 74.57
Pre-train 74.81 62.03 71.32 58.16 74.25 82.69 92.23 84.75 69.70 64.64 72.09
Fine-tune (w/o pre-train) 77.40 59.71 67.19 57.75 70.80 83.24 76.02 74.52 71.74 62.52 69.20
Fine-tune (w/ pre-train) 79.08 62.95 78.53 61.34 76.50 85.34 93.71 85.41 76.03 66.63 75.25

Table 2: The harmonic mean source AUC (%), target AUC (%),
and pAUC (%) for different selected ratio m% in ablation ex-
periments on MPE in pre-training.

ratio m% Source AUC Target AUC pAUC Overall
w/o MPE 83.53 68.60 63.53 70.94

50% 84.54 70.02 63.31 71.59
25% 84.75 69.70 64.64 72.09

12.5% 83.98 68.49 64.58 71.44

In terms of overall results, our proposed prototype learn-
ing methods significantly outperform most ASD systems. We
believe the primary reason is that the unified prototype learn-
ing framework is so flexible that our proposed domain-related
methods can be conveniently applied. Compared to the base-
line, the results of pre-training show that the unified prototype
framework achieves an improvement for the source domain. Af-
ter fine-tuning, our framework obtains superior results in the
target domain while further improving the performance in the
source domain, achieving a trade-off between the two domains.
Moreover, it is worth noting that the performance of ‘Fine-
tune (w/o pre-train)’ shows a little gap between the source and
target domains, which indicates the effectiveness of balanced
sampling for addressing the imbalanced learning issue. How-
ever, skipping the pre-training also weakens the representational
ability of the source domain. This is because balanced sampling
under-samples source domain data, causing some loss of infor-
mation from that domain.

In Table 2, we present the results of ablation experiments
on the MPE module, where the selected ratio m% indicates
the percentage of samples over which the sub-prototype is cal-
culated. It is not hard to observe that our proposed MPE
method improves the overall performance. The best overall
performance is achieved when 25% samples are utilized to ob-
tain sub-prototypes. That is because the sub-prototypes pro-
vide more information on positives and negatives, promoting
the descriptiveness and discrimination of the learned represen-
tations. Since more diverse sub-prototypes are offered for repre-
sentation learning, performance on the source domain achieves
a consistent improvement. For the target domain, the over-
sampling in MPE also benefits its performance, but m% needs
to be chosen carefully due to the limited number of samples.
When the selected ratio is set to 12.5%, the gain of MPE is lim-
ited. This may be because the obtained sub-prototypes intro-
duce bias in the description of original attributes, which affects
the representation learning for ASD.

Table 3: The harmonic mean source AUC (%), target AUC (%),
and pAUC (%) of ablation experiments on NPE with different
ranges of λ.

Range of λ Source AUC Target AUC pAUC Overall
Pre-train 84.75 69.70 64.64 72.09
w/o NPE 84.35 73.37 65.40 73.57
[0, 0.25] 85.26 73.16 66.55 74.21

[0.25, 0.5] 85.41 76.03 66.63 75.25
[0.5, 0.75] 79.34 74.61 65.11 72.52
[0.75, 1.0] 75.00 72.65 61.44 69.17

We also study the influence of NPE module mixing co-
efficient λ on performance, as shown in Table 3. Compared
with pre-training, even without NPE, fine-tuning with balanced
sampling not only significantly improves target domain perfor-
mance but also maintains performance in the source domain.
After applying NPE, more pseudo-anomalies are synthesized
by mixing, which allows both domains to be further optimized.
However, once the value of λ is too large, simulated anomalies
are too close to the anchor, resulting in inaccurate representa-
tion learning for the anchor. The negative effect can be noticed
in Table 3, where the source domain performance declines sig-
nificantly if λ > 0.5. Therefore, it is crucial to select a rea-
sonable range of λ. When λ follows a uniform distribution be-
tween [0.25, 0.5], the synthetic negatives are hard enough and
far enough away from the anchor, achieving the best perfor-
mance on all three metrics.

5. Conclusion
In this paper, we argue that the quality of a prototype plays an
important role in both generative and discriminative ASD meth-
ods. Based on this unified perspective, we propose a prototype
learning framework, which can be extended to various ASD
tasks. Specifically, we apply the framework to address domain
generalization in ASD, where a high degree of imbalance ex-
ists between source and target domains. The proposed balanced
sampling and MPE strategies within the framework can miti-
gate this imbalance. Meanwhile, an NPE strategy is employed
to simulate anomalies to improve inter-class representation and
thus enhance the discriminative ability. Extensive experiments
on the DCASE2022 Task2 development dataset demonstrate the
flexibility of the prototype learning framework, and the effec-
tiveness of its extension for domain generalization in ASD.
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