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Abstract

Self-supervised learning (SSL) has recently allowed leveraging
large datasets of unlabeled speech signals to reach impressive
performance on speech tasks using only small amounts of an-
notated data. The high number of proposed approaches fostered
the need and rise of extended benchmarks that evaluate their
performance on a set of downstream tasks exploring various as-
pects of the speech signal. However, and while the number of
considered tasks has been growing, most rely upon a single de-
coding architecture that maps the frozen SSL representations to
the downstream labels. This work investigates the robustness
of such benchmarking results to changes in the decoder archi-
tecture. Interestingly, it appears that varying the architecture
of the downstream decoder leads to significant variations in the
leaderboards of most tasks. Concerningly, our study reveals that
benchmarking using limited decoders may cause a counterpro-
ductive increase in the sizes of the developed SSL models.
Index Terms: self-supervised learning, representation learning

1. Introduction
Self-supervised learning (SSL) provides a powerful means of
benefiting from large volumes of unlabeled data to achieve sub-
stantial performance gains across a range of downstream tasks,
without relying on manual annotations. Several approaches
have been proposed in the literature, including predictive coding
[1], multi-task learning [2], and contrastive learning approaches
[3, 4]. Self-supervised models have lately become a necessary
tool for speech practitioners suffering from scarce annotations.

However, experimenting with large SSL models is a costly
endeavor both in terms of time and computing. Thus, the pro-
liferation of approaches for speech SSL [5] has highlighted
the need for benchmarks that evaluate their performance across
multiple downstream tasks. Ultimately, such benchmarks ex-
plore various aspects of the speech signal, helping practition-
ers to make informed choices adapted to their use cases. They
also serve as a simple way to assess the effectiveness of differ-
ent techniques and identify areas for improvement. As a result,
an increasing number of extended benchmarks have emerged
in recent years, providing standardized frameworks for evalu-
ating the performance of speech SSL models and algorithms
[6, 7, 8]. These benchmarks cover a large range of speech tasks
and applications and, even among a single task such as auto-
matic speech recognition (ASR), a large choice of linguistic,
acoustic and prosodic settings [9].

In popular speech SSL benchmarks, for every consid-
ered task, the self-supervised representation is probed using a
learned downstream decoder mapping the frozen representation

to the final labels. Simplicity and limited capacities are the main
drivers of the choice of these downstream probes with, for in-
stance, linear probing for classification tasks or shallow vanilla
recurrent neural networks for speech recognition. We hypoth-
esize that such a benchmarking policy may harm the develop-
ment of novel SSL technologies in at least two ways. First,
the popularity of the main benchmarks, e.g. SUPERB [6], has
made the considered downstream probes the de facto evalua-
tion setting for any new speech SSL model. This is also true
for the metrics used in the benchmark, which will condition the
optimization process during the development of these new ap-
proaches, possibly leading to decisions to drop models that per-
form poorly with the selected probes but may perform better
with other downstream architectures. Second, as the simplicity
of the probes contrasts with the growing complexity of the SSL
encoders, testing with low-capacity probes may imply a transfer
of complexity from the decoder (expected to be task-specific) to
the encoder (supposedly more general), leading to superfluously
large self-supervised parts. As an example, in computer vision,
Dubois et al. [10] have shown that changing the probe family
from linear to multi-layer perceptrons (MLP) leads to different
optimal choices in the hyperparameters of the SSL models and
enables smaller SSL representations.

A first solution to such limitations might come from consid-
ering novel downstream-agnostic evaluations [11], through in-
trinsic quality assessment metrics for speech embeddings [12],
but the correlation of these metrics with downstream perfor-
mances has not been clearly identified [13] yet. In the context of
image classification, Garrido et al. [14] have indicated that the
rank of the vision SSL representations correlates highly with the
final downstream performance. However, this study has been
conducted with linear downstream probes only. Conscious of
these issues, SUPERB [6], the main speech SSL benchmark,
proposes two tracks where the downstream probes can be cho-
sen by the submitter, with or without capacity constraints on the
probes but these two tracks remain empty of submissions.

Therefore, this work evaluates the robustness of speech SSL
benchmarks to variations in the probing architecture. The con-
tributions are three-fold: i) We benchmark a set of published
state-of-the-art SSL models on various speech tasks, varying the
downstream decoders (Section 2); ii) We show that, except for
ASR on LibriSpeech, the rankings and relative performances
of the models are severely impacted by a change of decoder
(Section 3); iii) We release the code1 for the benchmark, imple-
mented in SpeechBrain [15], for replication and further research
on SSL models and downstream tasks.

1github.com/salah-zaiem/speechbrain-2/tree/
develop/recipes/SSL_benchmark
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2. Definition and Experimental Protocol
This section formally describes the limitation faced by current
speech SSL benchmarks and also details the experiment proto-
col illustrating this issue.

2.1. Problem definition

Formally, a SSL pipeline consists of two models: a pre-trained
encoder ϕ and a downstream probe f . ϕ is learned through solv-
ing a pretext task on unlabeled speech datasets (Libri-light [16]
and LibriSpeech960 [17] have been popular choices in the liter-
ature), while f is learned on the annotated downstream dataset.
In this framework, the SUPERB benchmark has chosen for ev-
ery considered downstream task T a probing family FT (i.e. a
downstream architecture) and shows for every considered SSL
encoder ϕ a task error rate corresponding to:

min
f∈FT

Et(f ◦ ϕ) (1)

with Et(f ◦ ϕ) the test-set error rate of the full SSL pipeline.
However, proper benchmarking would rank the candidate

models according to the minimum quantity defined above over
all the possible downstream probing families, possibly with a
model capacity constraint. This measure is computationally in-
tractable, as it would require training a model with every possi-
ble known downstream architecture respecting the capacity con-
straints for every considered encoder and task. In this work, we
will explore whether benchmarking according to the value ob-
tained in Equation (1) leads to a proper and robust ranking. To
this effect, for every considered downstream task, we will sur-
vey two (or more) probing families, and see whether the rank-
ings and relative differences obtained using the first families are
kept in the second experiment.

2.2. Self-supervised pretrained models

To perform this study, a subset of the models presented in the
SUPERB benchmark is considered. In particular, we retrieved
the best-performing and easiest-to-use SSL models. Hence, 9
models acting directly on the raw waveform have been selected:
Wav2vec 2.0 [1], HuBERT [18], WavLM2[19], and Data2vec
[20] both in their Base and Large versions. DistilHuBERT [21],
a distilled version of Hubert Base with 4 times less transformer
layers, is also added to the list. The considered models share
the same output frequency generating a representation of size
D every 20 ms of audio signal, with D = 1, 024 for Large
versions and D = 768 for Base ones and DistilHuBERT.

All the models considered are based on very similar
Transformer-based architectures, but their pretraining pretext
tasks differ. Wav2vec2.0 training is based on the contrastive
predictive coding [22] (CPC) objective, maximizing the mutual
information between a set of context features and predicted fu-
ture samples. HuBERT and WavLM learn to map the unlabeled
audio to sequences of pseudo-labels obtained through the clus-
tering of previous representations. WavLM introduces distor-
tions during the training to enforce noise-related invariances.
Inspired by teacher-student approaches, Data2vec is trained by
utilizing a masked input view to predict latent representations of
the complete input data, in a self-distillation configuration. All
the pre-trained checkpoints are obtained from their Hugging-
Face (HF) official cards [23], with the exception of Wav2vec2.0

2We considered WavLM Base+, trained on 94k hours of speech
data, for the Base WavLM version.

Large whose Fairseq [24] checkpoint is used, as the HF one was
underperforming compared to the results reported in SUPERB.

2.3. Downstream Tasks and Datasets

Speech SSL benchmarks have been attempting to evaluate
universal speech representations by providing a large set
of different tasks that assess different aspects of the speech
signal. Similarly, we propose 7 tasks that tackle the phonetic,
speaker-identity-related, emotive and semantic aspects.

Speech Recognition Tasks. Four speech recognition tasks are
considered in this work. For the two first ones, LibriSpeech
[17] train-clean-100/dev-clean subsets are used for training and
validation while test-clean and test-other are used for testing.
To test the ability of the models with fewer data and in a spon-
taneous context, the Buckeye dataset [25] is considered. The
training, validation, and test splits used in our Buckeye experi-
ments are available in the repository with the training set con-
taining approximately 9.5 hours of audio and the test set 1.5
hours. For these two English ASR tasks, two results are shown
depending on whether a language model (LM) is used or not
during decoding. In the experiments labeled as Without LM,
greedy decoding is applied. For the “With LM” experiments,
the LibriSpeech official 4-gram language model is utilized. The
language model is combined with shallow fusion to the acoustic
model. Since low-resource languages are one of the main ap-
plications of SSL methods, two low-resource languages tasks,
extracted from the CommonVoice 11.0 [26] release, are consid-
ered: Welsh (Cymraeg) and Basque (Euskera). The Word Error
Rate (WER) is used as the error metric for all the ASR tasks. In
all the ASR experiments, the probe is trained using the Connec-
tionist Temporal Classification[27] loss at the character level.
Automatic Speaker Verification. Automatic Speaker Verifica-
tion (ASV) involves a binary classification process to determine
if the speakers in a pair of utterances are the same. As in the SU-
PERB benchmark, we use VoxCeleb1 [28] train and test splits
for this task. It is important to note that the speakers in the
testing set may not have been included in the training set. The
evaluation metric is equal error rate (EER).
Emotion Recognition (ER). IEMOCAP [29], a dataset con-
taining 10, 039 from 10 speakers, is used for Emotion Recog-
nition. The task consists of predicting an emotion class for
the utterance among 4 candidates (neutral, happy, sad, angry).
The performance shown is the mean of 10 runs done cross-
validating on ten folds leaving each time one of the speakers’
data for testing.
Intent Classification (IC). Instead of Speech Commands (SC)
[30], which is the dataset used in the SUPERB benchmarks for
IC, we use the SLURP dataset [31], as the error rates with SC
are already very low and SLURP is a more challenging task.
The SLURP collection consists of approximately 72, 000 au-
dio recordings that capture single-turn user interactions with a
home assistant. The IC task consists of classifying every ut-
terance into one of the 18 considered scenarios. Examples of
scenarios include “calendar”, “email” and “alarm”. The metric
for emotion recognition and intent classification is accuracy.

2.4. Downstream Probes

This section provides a high-level description of the used
downstream probes. The numerous hyperparameters and
architectural details, allowing thorough replication of the
experiments, are available in the provided repository.
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Table 1: SSL benchmarking results for all tasks and downstream architectures. On most downstream tasks, rankings and relative
performances are severely impacted by the change of the downstream architecture. The number of parameters of the SSL encoder and
the probes is shown in the “Params” rows and columns.

Models /Tasks SSL Params. LibriSpeech train-100 ASR Buckeye ASR Welsh Basque ASV ER IC

Evaluation Metrics WER ↓ WER ↓ WER ↓ WER ↓ EER ↓ Acc. ↑ Acc. ↑
First downstream architectures LSTM LSTM LSTM LSTM Xvectors Pool + Lin. Pool + Lin.

Clean Other Clean LM Other LM w/o LM with LM Welsh Basque ASV ER IC

DistilHuBERT 23.5M 13.99 34.91 9.96 28.26 35.59 28.29 53.20 46.78 9.1 65 46.6
Wav2vec 2.0 Base 95M 6.23 14.93 4.86 11.97 24.87 19.48 54.45 51.21 5.29 66.4 59.0
Wav2vec 2.0 Large 317.4M 3.72 9.25 3.13 7.48 20.72 16.11 45.42 37.98 5.69 69.3 66
HuBERT Base 94.7M 6.24 15.03 5.03 12.31 45.53 26.51 52.92 46.91 4.50 67.5 53.8
HuBERT Large 316.6M 3.57 8.12 2.90 6.59 51.30 33.10 51.21 46.15 5.20 71.3 69.9
WavLM Base+ 94.7M 5.96 14.33 4.84 11.72 42.21 24.41 51.31 46.40 3.74 67.1 57.9
WavLM Large 316.6M 3.48 7.37 2.87 5.96 27.31 14.27 48.92 41.89 2.98 75.3 78.8
Data2vec Base 93.8M 5.30 13.79 4.03 10.97 37.26 30.50 54.00 46.37 5.43 63.0 56.9
Data2vec Large 314.3M 3.10 6.50 2.58 5.38 22.63 18.63 44.32 38.23 4.89 64.1 69.8

Probe size and inference metrics

Downstream Parameters Base 39.9M 39.9M 40.3M 40.3M 7.0M 13.8k 3.1k
Downstream Parameters Large 42M 42M 42.4M 42.4M 7.7M 18.4k 4.1k

Second downstream architectures Conformer ContextNet Lin. Lin ECAPA ECAPA LSTM + Lin.

Clean Other Clean LM Other LM w/o LM with LM Welsh Basque ASV ER IC

DistilHuBERT 23.5M 14.97 36.51 11.54 31.41 58.56 43.61 80.78 77.04 2.85 72.4 74.9
Wav2vec 2.0 Base 95M 6.91 15.39 5.09 12.29 30.04 23.04 74.31 71.76 2.82 73.2 77.7
Wav2vec 2.0 Large 317.4M 4.32 9.25 3.58 7.03 23.92 18.68 75.45 78.48 3.17 68.4 79.0
HuBERT Base 94.7M 6.88 15.68 5.23 12.63 30.44 23.11 77.39 73.40 2.40 78.2 79.4
HuBERT Large 316.6M 3.96 8.60 3.10 6.88 39.39 31.57 71.58 60.24 3.84 71.5 80.1
WavLM Base+ 94.7M 6.55 14.93 4.98 11.80 27.73 21.69 75.87 69.43 1.76 72.6 81.2
WavLM Large 316.6M 4.08 8.10 3.13 6.31 15.61 12.1 68.73 56.32 1.77 77.4 85.8
Data2vec Base 93.8M 5.85 14.32 4.53 12.52 40.53 33.45 77.49 75.26 3.75 72.0 73.4
Data2vec Large 314.3M 3.43 6.82 3.27 6.58 25.26 21.5 69.09 63.31 2.67 71.3 79.9

Probe size and inference metrics

Downstream Parameters Base 11.2M 32.4M 1.9M 1.9M 9.2M 7.3M 42M
Downstream Parameters Large 11.2M 32.5M 2.3M 2.3M 9.8M 7.9M 44.1M

Global settings. During fine-tuning, the SSL encoder weights
are frozen and only the downstream decoder weights are
learned. Similarly to what is done in SUPERB, we observed
that the last-layer representation may not always be optimal
and, thus, collected all the hidden layers representations from
the pretrained model. These hidden states are then weighted and
summed together to create the representation fed to the decoder.
The layer weights are trained during the fine-tuning. To check
that the benchmark is properly set, we reproduced the SUPERB
downstream architectures in the first set of experiments. Sec-
ond, the probes are changed with simpler or more complex al-
ternatives inspired from the relevant literature of every task.
ASR tasks. In the first set of experiments, reproducing the SU-
PERB conditions, a vanilla 2-layer 1, 024-units BiLSTM fol-
lowed by a linear layer mapping the audio to the characters are
used. For the second downstream architectures, we consider
an encoder-decoder Conformer [32] downstream architecture
for LibriSpeech, with 12 encoder layers, 4 decoder ones and
4 attention heads. For the Buckeye task, we use a ContextNet
[33] with unitary strides to keep the frame rate of the SSL mod-
els. For Welsh and Basque, a two-layered dense neural network
is used to map every frame representation to the probabilities
of the characters. In a second time, experiments using Con-
textNet with LibriSpeech are also performed. ContextNet and
Conformer performances, which are close to state-of-the-art on
LibriSpeech, motivated their selection as downstream probes.
Automatic Speaker Verification. First, the X-vector [34] ar-
chitecture is tested with an AM-Softmax [35] loss training of the
speaker embeddings. For verification, we use the cosine simi-
larity between speaker representations. In the second experi-
ment, we replace the X-vectors with an ECAPA-TDNN neural
network [36]. ECAPA-TDNN combines time-delay neural net-
works with parallel attention mechanisms to capture temporal
dependencies and the long-range context in sequential data and

achieves state-of-the-art results in speaker verification.
Classification tasks. Similarly to SUPERB, we perform lin-
ear probing for classification tasks (i.e. intent classification and
emotion recognition) in the first set of experiments. The rep-
resentations are first average-pooled along the time axis before
being fed to a classification linear layer. For the second down-
stream architecture, and inspired by state-of-the-art approaches
[37], ECAPA-TDNN is chosen for emotion recognition. For in-
tent classification, following published architectures [38], two
layers of BiLSTM with hidden size 1, 024 followed by a linear
classifier are used. In contrast to using time-pooled features,
this allows for considering the order of frame representations.

3. Benchmarking Results and Discussion
Table 1 shows the full benchmarking results of the various SSL
models. The upper and lower parts of the table display the ob-
tained performance for the first and second sets of downstream
architectures respectively. The number of neural parameters are
also reported both for the SSL encoder and for the downstream
decoders. For the latter, only two numbers are provided per
task as it only depends on the dimension of the encoder output
vector, i.e. “Base” or “Large”. In the first set of experiments,
the settings of two tasks (LibriSpeech and ASV) are exactly
similar to the SUPERB benchmark conditions: the Pearson cor-
relation between our results and those shown in the SUPERB
leaderboard reaches respectively 0.99 and 0.97, validating our
reproduction of its experimental setting.

To study the impact of a decoder change on the final per-
formances, we compute, for every task, the Pearson and Spear-
man correlations between the performances obtained with the
first downstream architectures and those obtained with the sec-
ond ones, and collect them in Table 2. The Pearson correlation
evaluates the linear relationship between the two sets of per-
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Table 2: Pearson and Spearman correlations between the per-
formances obtained with first and second downstream probes,
for every considered task. The “Diff” column shows the rela-
tive difference in performance between the two architectures.

Task Pearson Spearman Mean DS1 Mean DS2 Diff (%)

LibriSpeech 1-2 0.99 0.97 5.8 6.48 -11.7
Librispeech 1-3 0.99 0.98 5.8 7.03 -21.2
Buckeye 0.42 0.56 34.16 32.39 5.2
Welsh 0.59 0.62 50.64 74.52 -47.2
Basque 0.19 0.15 44.66 69.47 -55.6
VoxCeleb 0.47 0.75 5.2 2.78 46.5
Iemocap 0.22 0.34 67.66 73 7.9
Slurp 0.75 0.66 62.1 79.04 27.3

formances, while the Spearman one assesses the strength and
direction of their monotonic relationship. Correlation metrics
close to 1 imply proportional performances and similar rankings
between the SSL models used with different probes, making the
benchmark robust to the considered downstream change.

All the models considered converge to competitive perfor-
mances on every downstream task and with all the decoding ar-
chitectures. With the notable exception of LibriSpeech, all the
downstream tasks exhibit very different behavior when probes
change. In Table 2, the last three columns show the mean per-
formance of the SSL candidates with the first and second down-
stream decoders. We observe, first, high sensitivity to the cho-
sen decoder, with relative improvements reaching 46.5% and
27.3% respectively for ASV and IC when decoding with the
second set of probes. Second, and more interestingly towards
answering our main question, the low correlation values (while
positive) testify to the large variations in relative performances
and rankings between the performances with DS1 and those
with DS2. The Spearman correlation, for instance, only reaches
0.34 and 0.66 for ER and IC respectively. It is worth noting
that while LibriSpeech performance assessment seems robust
to changes in the decoder, this does not generalize to the other
ASR tasks, starting with the spontaneous English Buckeye cor-
pus with 0.56 Spearman and 0.42 Pearson correlation, or the
Basque task with 0.19 Pearson and 0.15 Spearman correlations.
The case of Buckeye ASR is particularly interesting as changing
the decoder, from BiLSTM to ContextNet, improves the results
for a few models and harms them for others. The best perform-
ing one, WavLM Large using the second decoder, is only the
fourth best performing one with the SUPERB settings.

However, we observe that contrarily to the other down-
stream tasks, the rankings and performances of the considered
SSL encoders on the ASR task using LibriSpeech train-clean-
100, shown in Table 2 vary only very lightly with the change
of downstream decoder. To cross-validate this finding, experi-
ments using a third downstream decoder, ContextNet, are pro-
duced for this task. The results of this additional experiment
are reported in Table 3. Similarly, no major differences are wit-
nessed in the ranking of the SSL candidates. For instance, in
the three setups, without LM decoding, Data2vec Large is al-
ways the best-performing representation, whether it is on the
test-clean or the test-other split. Similarly, DistilHuBERT is
systematically the worst performing one and the “Large” ver-
sions of the considered candidates perform consistently better
than their “Base” counterparts. These results are confirmed
in Table 2 where Spearman and Pearson correlations between
the performances using the different downstream decoders are
over 0.97 for LibriSpeech while the highest correlation value
is 0.75 for the other tasks. With LibriSpeech being one of the
main ASR benchmarking dataset, and as it is systematically part
of the pretraining dataset, these observations suggest that the
SSL encoders may be overfitting on this task. These results al-

Table 3: WER results of LibriSpeech experiments on the two
considered test splits with a third downstream probe

Tasks \Models SSL Params Clean Other Clean LM Other LM

DistilHuBERT 23.5M 20.52 43.27 10.44 29.17
Wav2vec 2.0 Base 95M 7.24 15.66 4.73 11.21
Wav2vec 2.0 Large 317.4M 4.35 8.68 03.03 6.86
HuBERT Base 94.7M 7.31 16.00 4.60 11.11
HuBERT Large 316.6M 4.04 8.63 2.98 6.45
WavLM Base+ 94.7M 6.73 15.33 4.52 10.84
WavLM Large 316.6M 4.09 8.43 2.94 6.15
Data2vec Base 93.8M 5.46 13.34 3.76 10.04
Data2vec Large 314.3M 3.50 6.94 2.56 5.36

Probe size and inference metrics

Downstream Parameters Base 32.4M
Downstream Parameters Large 32.5M

low us to conclude that, except for LibriSpeech ASR, current
SSL benchmarking is not robust to the choice of the down-
stream probe. Furthermore, the reported results highlight an
interesting consequence of using low-capacity decoders. With
the first set of downstream architectures, “Large” versions of
SSL models are almost always better performing than their
“‘Base” counterparts. However, this is not the case with higher-
capacity decoders in the second set of probes. For instance, the
best ASV and ER performances are reached, respectively, with
WavLM Base+ and HuBERT Base. For intent classification,
when changing the downstream decoder from linear to BiL-
STMs, the mean absolute difference between the “Base” and
“Large” versions’ performance drops from 14.23 to 3.28. For
emotion recognition, while all four “Large” versions perform
better than the “Base” ones when probed linearly, enhancing
the capacity of the decoder reverses this order for all of them
except WavLM. Furthermore, concerning the ASV results, Dis-
tilHuBERT performs better with an ECAPA decoder than the
best model (WavLM Large) with an x-vector-based head, while
containing more than 13 times fewer parameters. Since the
number of parameters does not present a full picture of the in-
volved computations, the THOP library3 is used to compute the
number of Multiply–accumulate operations (MACs). During
inference, running DistilHuBERT–ECAPA on VoxCeleb1 en-
roll and test sets involves computations reaching a mean 249.4G
MACs per batch of 8 samples, for a result of 2.85 EER, while
WavLM Large–Xvectors requires a mean batch computation of
1.2T MACs to reach 2.98 EER. All these observations lead to
the conclusion that keeping very small-capacity decoders may
lead to an inflation in model sizes.
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5. Conclusion
In this work, various experiments have been described to evalu-
ate the robustness of speech SSL benchmarks to changes in the
downstream probes. The results obtained show a high sensi-
tivity of the leaderboard rankings and relative performances to
the choice of the downstream architectures. Furthermore, it is
shown that selecting low-capacity decoders may lead to over-
sized SSL encoders. We hope this diagnosis will help the com-
munity to design new benchmarking approaches and encourage
submissions to the SUPERB “Constrained” track.

3github.com/Lyken17/pytorch-OpCounter
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